تعیین ترکیب شیمیایی و انرژی قابل متابولیسم کنجاله سیاه ‌دانه با استفاده از خروس‌های بالغ و مدل‌های پیش‌‌بینی AMEn

نوع مقاله : علمی پژوهشی- تغذیه طیور

نویسندگان

1 گروه علوم دامی، دانشکده کشاورزی، دانشگاه بیرجند، بیرجند، ایران.

2 گروه علوم دامی، دانشکده کشاورزی، دانشگاه بیرجند، بیرجند، ایران

چکیده

به منظور تعیین ترکیب شیمیایی و انرژی قابل متابولیسم ظاهری و حقیقی کنجاله سیاه‌ دانه و برآورد انرژی قابل متابولیسمی ظاهری تصحیح شده برای ازت به کمک مدل‌های پیش‌بینی، نمونه‌های کنجاله سیاه‌ دانه از سه کارخانه روغن‌کشی در استان‌های خراسان جمع آوری شد. به منظور انرژی قابل متابولیسمی، از 16 قطعه خروس‌بالغ‌های-لاین 36- W(سن 31 هفتگی) در آزمایشی در قالب طرح کاملا تصادفی حاوی چهار تیمار با چهار تکرار (یک قطعه در هر تکرار) استفاده شد. نتایج نشان داد که مقدار ماده خشک، پروتئین خام، چربی خام، الیاف خام و خاکستر کنجاله سیاه‌ دانه به ترتیب برابر 723/0± 24/92، 151/1± 749/30، 129/1±487/7، 813/0 ±884/7، 955/0± 871/52، 227/0 ±999/4 است. انرژی قابل متابولیسم ظاهری (AME) و تصحیح شده برای ازت (AMEn) کنجاله سیاه ‌دانه برابر 596/89 ± 21/2234 و 594/89 ±52/2233 و انرژی قابل متابولیسم حقیقی(TME) و تصحیح شده برای ازت (TMEn) کنجاله سیاه دانه برابر 254/76 ± 79/2298 و 251/76±38/2298 کیلوکالری بر کیلوگرم به دست آمد. بهترین معادله جهت برازش انرژی قابل متابولیسمی ظاهری تصحیح شده برای ازت برمبنای اجزاء سازنده کنجاله سیاه ‌دانه، با استفاده از رابطهAMEn= 4095.41 + 5.684EE −22.526ASH−2.224aNDFom.‌ برابر 899/52±05/2219 کیلوکالری در کیلوگرم برآورد شد. بنابراین، می‌توان از این رابطه برای تخمین میزان AMEn کنجاله سیاه ‌دانه براساس میزان چربی و فیبرنامحلول در شوینده خنثی (aNDFom) و خاکستر بهره جست.

کلیدواژه‌ها


عنوان مقاله [English]

Determination of Nutritive Value and Metabolizable Energy of Nigellasativa Meal Using Leghorn Cockerel and Predicted AMEn Model

نویسندگان [English]

  • seyyed javad Hosseini-vashan 1
  • Taherh Ghaznavi 2
1 Department of Animal Science, Faculty of Agriculture, University of Birjand, Birjand, Iran.
2 Department of Animal Sciences, Faculty of Agriculture, Birjand University, Birjand, Iran
چکیده [English]

Introduction The protein sources in poultry nutrition are the most expensive parts of rations. Today, soybean meal is the major protein source that using in poultry nutrition. The cost of soybean meal is expensive and search to find new source of protein for poultry diet is important. Nigellasativa meal is a protein that could be used in poultry nutrition. The Nigella sativa or cumin seed meal has an acceptable percentage of crude protein, crude fiber, ether extract and metabolizable energy. The amino acid profile of nigella sativa meal is better than soybean meal with the exception for lysine. The percentage of lysine in soybean meal was higher than nigella sativa. Broilers that fed nigella sativa had better performance, and immune system. Therefore, the main objective of the present experiment was conducted to determine metabolizable energy of Nigella sativa or cumin seed meal by adult cockerels.
Materials and Methods The nigella sativa meal samples were provided from three industries. The major components of samples involved gross energy, crude protein, crude fiber, ether extract, ash, calcium, available phosphorous were analyzed by AOAC method. The AME of nigella sativa samples were determined by cockerels. A total of sixteen leghorn cockerels were used. The age of cockerels was 31 weeks old. This experiment was done in a completely randomized design with 4 treatments involved 0, 10, 20 and 30 percentage of nigella sativa with 4 replicates (1 cockerel each).The cockerels were adapted to new diets for 3 days, and then they were hunger for 24 hours. Cockerels were fed experimental diets for 72 hours and the excreta were collectedat whole of this period. The excreta and diets samples were analyzed for gross energy, crude protein, crude fiber, ether extract, ash, calcium, available phosphorous were analyzed by AOAC method. The AME of experimental diets were computed by the models of AME (Kcal/kg)= [Fi×GEf)-(E×GEe) ]/ F. Then, AME of experimental feed were calculated by the equations of AMEn(Kcal/kg)=AME of basal diet – [(AME of basal diet – AME of experimental diet)/ levels of replacement].Then, the digestibility and metabolizable energy of diets were determined. The predicted apparent metabolizable energy was corrected for nitrogen (AMEn) was calculated with suggested equations of Nascimento et al. (2007 and 2009).
Results and Discussion The cumin seed meal had 92.24 ± 0.723 % dry matter, 30.749 ± 1.151 % crude protein, 7.487 ± 1.129 % ether extract and 7.884 ± 0.813 % crude fiber, 52.871 ± 0.955 % neutral detergent fiber (NDF), 4.999 ± 0.227 % Ash. These findings were in agreement with results of previous researches. Abdo (2004) reported that Nigella sativa had 5.59, 86.8, 31.36, 12.27, 16.52, 7.61, 26.65, 1.16 and 0.7 % moisture, organic matter, crude protein, ether extract, crude fiber, ash, nitrogen free extract (NFE), calcium, and available phosphorous respectively. The apparent metabolizable energy (AME), and nitrogen-corrected apparent metabolizable energy (AMEn) forcumin seed meal were 2234.21 ± 89.596, and 2233.52 ± 89.594, kcal/kg, respectively. Abbas Ali et al., (2012) also reported that nigella sativa is an enrichment of minerals involved sodium, potassium and calcium. The true metabolizable energy (TME) and nitrogen-corrected true metabolizable energy of cumin seed meal were 2298.79 ± 76.254 and 2298.38 ± 76.25 kcal/kg, respectively. There are several equations for predicting the AMEn. Some of this equations that proposed by Nascimento et al., (2007 and 2009) are: 1)AMEn = 2707.71 + 5.863EE− 1.606aNDFom,(R2 = 0.81; RSD = 0.4847; P-value

کلیدواژه‌ها [English]

  • Cockerels
  • Nigella Sativa
  • Nitrogen-corrected metabolizable energy
  • Metabolizable energy
1- Abbas Ali, M., M. Abu Sayeed., M. ShahinurAlam., Mst. SarminaYeasmin., A. Mohal Khan, and I. Muhamad Ida. 2012. Characteristics of oils and nutrient contents of nigella sativalinn. And trigonella foenum-graecum seeds. Bulletin Chemistry Society Ethiopology, 26(1): 55-64.
2- Abdo, Z. M. 2004. Effect of phytase supplementation on the utilization of Nigella Sativa seed meal in broiler diets. Egyptian Poultry Science, 7: 143-162.
3- Akhtar, M. S., Z. Nasir, and A. R. Abid. 2003. Effect of feeding powdered Nigella sativa L. seeds on poultry egg production and their suitability for human consumption. Veterinarian Archives, 73(3): 181-190.
4- Al-Bukhari, S. A. 1971. The translation of the meaning of sahih Al-Bukhari by Mohammad Mohsen khan-darElarabia publishing, printing and distribution, Beirut, Lebanon.
5- Alvarenga, R. R., P. B. Rodrigues., M. G. Zangeronimo., R. T. F. Freitas., R. R. Lima., A. G. Bertechini, and E. J. Fassani. 2011. Energetic values of feedstuffs for broilers determined with in vivo assays and prediction equations. Animal Feed Science and Technology, 168: 257– 266.
6- AOAC International. 2012. Official Methods of Analysis. 19th ed. AOAC International, Gaithersburg, MD.
7- Awadalla, S. A, and M. Azza Kamal. 2000. Effect of nigella sativa seeds and oil on performance and some biochemical parameters in rabbit's serum. Egyptian Veterinary Nutrition Journal, 1: 31-42.
8- GhafoorianRad , M., H. Nassiri Moghadam., H. Kermanshahi, and M. DaneshMesgaran. 2011. Determination of MetabolizableEenergy, Protein Quality and Chemical Composition of Blood Meal for Broiler Chickens and Adult Leghorn Rosters. Iranian Journal of Animal Science Research, 3(1): 15-23. (In Persian).
9- Leeson, S, and L. D. Summers. 2001. Scott's Nutrition of the Chicken. 4th Ed. University Books, Canada.
10- Nascimento, G. A. J. 2007. Prediction equations of the energetic values of poultry feedstuffs for utilizing the meta-analysis principle. PhD Thesis University Lavras, Minas Gerais, Brazil.
11- Nascimento, G. A. J., P. B. Rodrigues., R. T. F. Freitas., A. G. Bertechini., R. R. Lima, and L. E. A. Pucci. 2009. Prediction equations to estimate the energy values of plant origin concentrate feeds for poultry utilizing the meta-analysis. Brazilian Journal of Animal Science, 38: 1265–1271.
12- Nasir, Z, and M.A. Grashorn. 2006. Use of Black cumin (Nigella sativa) as alternative to antibiotics in poultry diets. Pages 210-213 in Proc. 9th TagungSchweine-und Geflügelernährung, Halle (Saale), Germany.
13- Nasir, Z, and M. A. Grashorn. 2009. Echinacea: A potential feed and water additive in poultry and swine production. Archives Fur Geflügelk, 73(3): 227-236.
14- Rezaeipour, V., F. Boldaji., B. Dastar., A. Yaghobfar, and A. Ghaisari. 2009. Determination of apparent nutrients digestibility and metabolizable energy of diets with different inclusion of dried tomato pomace in broiler chickens. Journal of Agricultural Science and Natural Resources, 16(1): 90-102. (In Persian).
15- Rodrigues, P. B., H. S. Rostagno., L. F. T. Albino., P. C. Gomes., W. A. Barboza, and R. T. Santana. 2001. Energy values of millet, corn and corn byproducts, determined with broilers and adult cockerels. Brazilian Journal of Animal Science, 30: 1767–1778.
16- Saoltan, M. A. 1999. Effect of dietary Nigella sativa (black seed) and /or ox bile supplementation on growth and reproductive performance of Japanese quail. Alexia Journal Veterinary Science, 15(3): 655-9.
17- Sibbald, I. R. 1986. The T.M.E. system of feed evaluation: methodology, feed composition data and bibilography. Technical Bulletin 1986-4 E. Research Branch, Agriculture Canada, Ottawa, Canada.
18- Tekeli, A. 2014. Nutritional value of black cumin meal as an alternative protein source in poultry nutrition. Journal of Animal Science Advanced, 4(4): 797-806.
19- Yaghobfar, A, and A. Boldaji. 2002. Influence of level of input and procedure on metabolisable energy and endoge- nous energy loss (EEL) with adult cockerels. British Poultry Science, 43: 696-704.
CAPTCHA Image