تأثیر نسبت‌های مختلف متیونین- روی و اکسید روی بر شاخص‌های عملکردی و اسهال گوساله‌های شیرخوار هلشتاین

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه علوم دامی، دانشکده علوم دامی و شیلات، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، ایران

چکیده

اسهال، یکی از عوامل اصلی مرگ ‌و میر گوساله­ها در دو هفته اول پس از تولد است، بنابراین شناسایی ترکیبات مؤثر بر پیشگیری از اسهال برای گوساله­های شیرخوار، بسیار مهم است. به­منظور بررسی نسبت­های مختلف مکمل­های روی بر بهبود اسهال و عملکرد گوساله­ها، تعداد 50 راس گوساله هلشتاین شیرخوار در قالب یک طرح کاملاً تصادفی با پنج تیمار و 10 تکرار استفاده شد. تیمارهای آزمایشی شامل مصرف مکمل روی به‌صورت 1) 100درصد متیونین- روی، 2) 75 درصد متیونین- روی و 25 درصد اکسید روی، 3) 50 درصد متیونین- روی و 50 درصد اکسید روی، 4) 25 درصد متیونین- روی و 75 درصد اکسید روی و 5) 100 درصد اکسید روی بود. مکمل روی از روز اول تولد تا روز 14 به گوساله­ها تغذیه شد و بررسی عملکرد به‌مدت 70 روز تا زمان قطع شیر ادامه داشت. ماده خشک مصرفی، افزایش وزن روزانه و امتیاز قوام مدفوع گوساله­ها تحت تأثیر تیمارهای آزمایشی قرار نگرفت. نسبت­های بالاتر اکسید روی سبب کاهش معنی‌دار غلظت آلکالین فسفاتاز و سوپراکسید دیسموتاز خون در روز 14 و 70 آزمایش شد. همچنین در روز 70 آزمایش، ظرفیت آنتی‌اکسیدانی کل خون، در تیمارهای حاوی متیونین- روی، به‌طور معنی­داری بیشتر از تیمار 5 (100 درصد اکسید روی) بود. در مجموع، عملکرد تولیدی، در نسبت­های مختلف منبع آلی و معدنی تغییر نکرد، عدم تأثیر جایگزینی اکسید روی با متیونین- روی بر عملکرد گوساله­ها در مطالعه حاضر ممکن است به‌دلیل ارائه سطوح کافی روی برای همه گوساله­ها باشد. بنابراین می­توان بیان داشت، در زمانی که عنصر روی در سطح کافی تأمین ­شود، شکل شیمیایی و زیست‌فراهمی منابع دارای اهمیت کمتری هستند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The Effect of Different Ratio of Methionine-Zinc and Zinc Oxide on Performance Indicators and Diarrhea in Suckling Holstein Calves

نویسندگان [English]

  • Morteza Rezapour
  • Yadollah Chashnidel
  • Asadollah Teimoury Yansary
  • Essa Dirandeh
PhD student in Animal Nutrition, Department of Animal Science, Faculty of Animal Sciences and Fisheries, University of Sari Agricultural Sciences and Natural Resources, Sari
چکیده [English]

Introduction[1]: Diarrhea is the main cause of calf mortality in the first two weeks after birth. Even when calves recover from diarrhea, they may subsequently show impaired growth. Considering this fact and especially following the ban of antibiotics in many countries, it is very important to identify effective anti-diarrheal supplements for use in suckling calves. Zinc is an effective anti-inflammatory and anti-diarrheal substance that improves the function of the immune system, reduces the number of pathogenic bacteria and increases the relative abundance of beneficial microbes in the digestive system. It is thought that the mechanisms of anti-diarrheal effect of zinc element are due to regulation of intestinal fluid transfer and mucosal integrity, strengthening of immunity and modulation of oxidative stress. The purpose of this experiment is to investigate the use of different proportions of organic (methionine-zinc) and inorganic (zinc oxide) sources of zinc to prevent diarrhea, improve the condition of the immune system and performance indicators of suckling calves.
 
Materials and Methods: A total of 50 suckling Holstein calves were used over 70 days in a completely randomized design with 5 treatments and 10 replications. The experimental treatments were different proportions of organic and inorganic zinc supplements, including 1) zinc supplementation, 100% Methionine-zinc 2) combination of 75% methionine-zinc and 25% zinc oxide, 3) combination of 50% methionine-zinc and 50% zinc oxide, 4) combination of 25% methionine-zinc and 75% zinc oxide, and 5) 100% zinc oxide. All treatments received 1.96 mg of zinc supplementation per kilogram of body weight. Zinc supplements mixed with milk were fed to the calves from day one to day 14, and performance monitoring continued for 70 days. The stool score was evaluated on a scale of 1 to 4. Diarrhea was defined as the presence of grade 3 or 4 stools for 2 consecutive days. Data were analyzed in a completely randomized design using the GLM procedure of SAS. For variables measured over time (average daily gain, dry matter intake, and feed conversion ratio), time was added to the model as a repeated factor.
 
Results and Discussion: The results showed that experimental treatments did not significantly effect the average daily gain, dry matter intake, and feed conversion ratio of the calves fed with Different ratios of mineral (zinc oxide) and organic (methionine-zinc) sources of zinc. In addition, the average of fecal consistency score did not differ significantly among the treatments. The results blood analysis demonstrated that treatment 100% methionine-zinc had higher level of concentration alkaline phosphatase. However, among the treatments contained methionine-zinc, a decrease in the ratio of methionine-zinc resulted in a decrease in Alkaline phosphatase concentration. Higher ratios of zinc oxide caused a significant decrease in the concentration of superoxide dismutase in the blood on the 14th and 70th day of the experiment. Also, on the 70th day of the test, the antioxidant capacity of whole blood was significantly higher in treatments containing methionine-zinc than in treatment %100 zinc oxide. The results showed that other blood parameters were not significantly influenced by the treatments in this study. In general, production performance did not change in different ratios of organic and mineral sources, the lack of effect of replacing zinc oxide with methionine-zinc on the performance of the present calves may be due to the provision of sufficient levels of zinc for all calves. So that the zinc supplement, taking into account its purity percentage, reached the same amount (1.96 mg of zinc supplement per kilogram of body weight) in all treatments.
 
Conclusion: In the present study, overall production performance and blood parameter concentrations did not change with different ratios of organic and mineral sources. However, the activity of antioxidant enzymes was higher with higher ratios of the organic supplement (methionine-zinc) compared to the mineral source (zinc oxide). The lack of positive effect of replacing zinc oxide with methionine-zinc on the performance of the present calves may be due to the provision of sufficient levels of zinc for all calves. And it can be said that when a mineral is supplied at a sufficient level, the chemical form and bioavailability of resources are less important on performance.
 






 



 

کلیدواژه‌ها [English]

  • Diarrhea
  • Immune system
  • Newborn calf
  • Zinc methionine
  • Zinc oxide

©2023 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source.

  1. Abdollahi, M., Rezaei, J., & Fazaeli, H. (2020). Performance, rumen fermentation, blood minerals, leukocyte and antioxidant capacity of young Holstein calves receiving high-surface ZnO instead of common ZnO. Archives of Animal Nutrition, 74(3), 189-205. https://doi.org/10.1080/1745039x.2019.1690389
  2. Adab, M., Mahjoubi, E., Yazdi, M. H., & Collier, R. J. (2020). Effect of supplemental dietary Zinc and its time of inclusion on pre-weaning phase of Holstein heifer calves: Growth performance and health status. Livestock Science, 231, 103891. https://doi.org/10.1016/j.livsci.2019.103891
  3. Alimohamady, R., Aliarabi, H., Bruckmaier, R. M., & Christensen, R. G. (2019). Effect of different sources of supplemental zinc on performance, nutrient digestibility, and antioxidant enzyme activities in lambs. Biological Trace Element Research, 189(1), 75-84. https://doi.org/10.1007/s12011-018-1448-1
  4. Anil, T. S. V., Seshaiah, C. V., Ashalatha, P., & Sudhakar, K. S. (2020). Effect of dietary nano zinc oxide supplementation on haematological parameters, serum biochemical parameters and hepato-renal bio-markers in crossbred calves. International Journal of Current Microbiology and Applied Sciences, 9, 2034-2044.
  5. Cani, P. D., Amar, J., Iglesias, M. A., Poggi, M., Knauf, C., Bastelica, D., Neyrinck, A. M., Fava, F., Tuohy, K. M., Chabo, C., Waget, A., Delmée, E., Cousin, B., Sulpice, T., Chamontin, B., Ferrières, J., Tanti, J. F., Gibson, G. R., Casteilla, L., Delzenne, N. M., Alessi, M. C., & Burcelin, R. (2007). Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes, 56(7), 1761-1772. https://doi.org/10.2337/db06-1491
  6. Chang, M. N., Wei, J. Y., Hao, L. Y., Ma, F. T., Li, H. Y., Zhao, S. G., & Sun, P. (2020). Effects of different types of zinc supplement on the growth, incidence of diarrhea, immune function, and rectal microbiota of newborn dairy calves. Journal of Dairy Science, 103(7), 6100-6113. http://dx.doi.org/10.3168/jds.2019-17610
  7. Cho, Y. E., Lomeda, R. A., Ryu, S. H., Sohn, H. Y., Shin, H. I., Beattie, J. H., & Kwun, I. S. (2007). Zinc deficiency negatively affects alkaline phosphatase and the concentration of Ca, Mg and P in rats. Nutrition Research and Practice, 1(2), 113-119. https://doi.org/10.4162/nrp.2007.1.2.113
  8. Cho, Y. I., & Yoon, K. J. (2014). An overview of calf diarrhea - infectious etiology, diagnosis, and intervention. Journal of Veterinary Science, 15(1), 1-17. http://dx.doi.org/10.4142/jvs.2014.15.1.1
  9. Cousins, R. J., Blanchard, R. K., Moore, J. B., Cui, L., Green, C. L., Liuzzi, J. P., Cao, J., & Bobo, J. A. (2003). Regulation of zinc metabolism and genomic outcomes. The Journal of Nutrition, 133(5 Suppl 1), 1521s-1526s. http://dx.doi.org/10.1093/jn/133.5.1521S
  10. Feldmann, H. R., Williams, D. R., Champagne, J. D., Lehenbauer, T. W., & Aly, S. S. (2019). Effectiveness of zinc supplementation on diarrhea and average daily gain in pre-weaned dairy calves: A double-blind, block-randomized, placebo-controlled clinical trial. PLoS One, 14(7), e0219321. https://doi.org/10.1371/journal.pone.0219321
  11. Genther, O. N., & Hansen, S. L. (2014). Effect of dietary trace mineral supplementation and a multi-element trace mineral injection on shipping response and growth performance of beef cattle. Journal of Animal Science, 92(6), 2522-2530. http://dx.doi.org/10.2527/jas.2013-7426
  12. Glover, A. D., Puschner, B., Rossow, H. A., Lehenbauer, T. W., Champagne, J. D., Blanchard, P. C., & Aly, S. S. (2013). A double-blind block randomized clinical trial on the effect of zinc as a treatment for diarrhea in neonatal Holstein calves under natural challenge conditions. Prev Vet Med, 112(3-4), 338-347. http://dx.doi.org/10.1016/j.prevetmed.2013.09.001
  13. Grešáková, Ľ., Tokarčíková, K., & Čobanová, K. (2021). Bioavailability of dietary zinc sources and their effect on mineral and antioxidant status in lambs. Agriculture, 11(11), 1093.
  14. Hu, C. H., Xiao, K., Song, J., & Luan, Z. S. (2013). Effects of zinc oxide supported on zeolite on growth performance, intestinal microflora and permeability, and cytokines expression of weaned pigs. Animal Feed Science and Technology, 181, 65–71. http://dx.doi.org/10.1016/j.anifeedsci.2013.02.003
  15. Jia, W., Zhu, X., Zhang, W., Cheng, J., Guo, C., & Jia, Z. (2009). Effects of source of supplemental zinc on performance, nutrient digestibility and plasma mineral profile in Cashmere goats. Asian-australasian Journal of Animal Sciences, 22, 1648-1653.
  16. Jing, M. Y., Sun, J. Y., & Wang, J. F. (2008). The effect of peripheral administration of zinc on food intake in rats fed Zn-adequate or Zn-deficient diets. Biological Trace Element Research, 124(2), 144-156. http://dx.doi.org/10.1007/s12011-008-8132-9
  17. Kumar, A., Sahu, D., Chandra, G., Yadav, S. P., Kumar, R., Jaiswal, V., Maurya, P., & Singh, R. K. (2018). Effect of different sources of zinc on growth performance and haemato-biochemical profiles of Murrah Buffalo calves. Indian Journal of Animal Nutrition, 35, 409. http://dx.doi.org/10.5958/2231-6744.2018.00062.2
  18. Kwun, I. S., Cho, Y. E., Lomeda, R. A., Kwon, S. T., Kim, Y., & Beattie, J. H. (2007). Marginal zinc deficiency in rats decreases leptin expression independently of food intake and corticotrophin-releasing hormone in relation to food intake. The British Journal of Nutrition, 98(3), 485-489. http://dx.doi.org/10.1017/s0007114507730763
  19. Li, Y., & Maret, W. (2009). Transient fluctuations of intracellular zinc ions in cell proliferation. Experimental Cell Research, 315(14), 2463-2470. http://dx.doi.org/10.1016/j.yexcr.2009.05.016
  20. Ma, F., Wo, Y., Li, H., Chang, M., Wei, J., Zhao, S., & Sun, P. (2020). Effect of the source of zinc on the tissue accumulation of zinc and jejunal mucosal zinc transporter expression in Holstein dairy calves. Animals (Basel), 10(8). http://dx.doi.org/10.3390/ani10081246
  21. Mallaki, M., Norouzian, M., & Khadem, A. (2015). Effect of organic zinc supplementation on growth, nutrient utilization,and plasma zinc status in lambs. Turkish Journal of Veterinary and Animal Sciences, 39, 75-80. http://dx.doi.org/10.3906/vet-1405-79
  22. Mandal, G. P., Dass, R., Isore, D. P., Garg, A., & Ram, G. (2007). Effect of zinc supplementation from two sources on growth, nutrient utilization and immune response in male crossbred cattle (Bos indicus X Bos taurus) bulls. Animal Feed Science and Technology, 138, 1-12. http://dx.doi.org/10.1016/j.anifeedsci.2006.09.014
  23. Marcondes, M., Pereira, T., Chagas, J., Filgueiras, E., Castro, D. M., Costa, G., Sguizzato, A., & Sainz, R. (2016). Performance and health of Holstein calves fed different levels of milk fortified with symbiotic complex containing pre- and probiotics. Tropical Animal Health and Production, 48. http://dx.doi.org/10.1007/s11250-016-1127-1
  24. Mattioli, G. A., Rosa, D. E., Turic, E., Relling, A. E., Galarza, E., & Fazzio, L. E. (2018). Effects of copper and zinc supplementation on weight gain and hematological parameters in pre-weaning calves. Biological trace element research, 185(2), 327-331. http://dx.doi.org/10.1007/s12011-017-1239-0
  25. Miller, N. J., Rice-Evans, C., Davies, M. J., Gopinathan, V., & Milner, A. (1993). A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates. Clinical Science (Lond), 84(4), 407-412. http://dx.doi.org/10.1042/cs0840407
  26. Najafzadeh, H., Ghoreishi, S., Mohammadian, B., Rahimi, E., Afzalzadeh, M., Kazemivarnamkhasti, M., & Ganjealidarani, H. (2013). Serum biochemical and histopathological changes in liver and kidney in lambs after zinc oxide nanoparticles administration. Veterinary World, 6, 534. http://dx.doi.org/10.5455/vetworld.2013.534-537
  27. Nayeri, A., Upah, N. C., Sucu, E., Sanz-Fernandez, M. V., DeFrain, J. M., Gorden, P. J., & Baumgard, L. H. (2014). Effect of the ratio of zinc amino acid complex to zinc sulfate on the performance of Holstein cows. Journal of Dairy Science, 97(7), 4392-4404. http://dx.doi.org/10.3168/jds.2013-7541
  28. Paglia, D. E., & Valentine, W. N. (1967). Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. Journal of Laboratory and Clinical Medicine, 70(1), 158-169.
  29. Patel, B., Kumar, N., Kotresh Prasad, C., Rajpoot, V., & Lathwal, S. S. (2021). Effect of zinc supplementation on physiological and oxidative stress status of peri-parturient Karan Fries cows during heat stress condition. Journal of Entomology and Zoology Studies, 9, 4.
  30. Sales, J. (2013). Effects of pharmacological concentrations of dietary zinc oxide on growth of post-weaning pigs: a meta-analysis. Biological Trace Element Research, 152(3), 343-349. http://dx.doi.org/10.1007/s12011-013-9638-3
  31. Santman-Berends, I., de Bont-Smolenaars, A. J. G., Roos, L., Velthuis, A. G. J., & van Schaik, G. (2018). Using routinely collected data to evaluate risk factors for mortality of veal calves. Preventive Veterinary Medicine, 157, 86-93. http://dx.doi.org/10.1016/j.prevetmed.2018.05.013
  32. Schulte, J. N., Brockmann, G. A., & Kreuzer-Redmer, S. (2016). Feeding a high dosage of zinc oxide affects suppressor of cytokine gene expression in Salmonella typhimurium infected piglets. Veterinary Immunology and Immunopathology, 178, 10-13. http://dx.doi.org/10.1016/j.vetimm.2016.06.009
  33. Seifdavati, J., Jahan Ara, M., Seyfzadeh, S., Abdi Benamar, H., Mirzaei Aghjehgheshlagh, F., Seyedsharifi, R., & Vahedi, V. (2018). The Effects of zinc oxide nano particles on growth performance and blood metabolites and some serum enzymes in Holstein suckling calves. . Iranian Journal of Animal Science Research, 10(1), 11. (In Persian).http://dx.doi.org/10.22067/ijasr.v10i1.62376.
  34. Shanigaram, P., Nagalakshmi, D., & Kumar, K. (2015). Effect of zinc supplementation on haematology and serum biochemical constituents in Murrah buffalo calves. Indian Journal of Animal Research, 49, 482. http://dx.doi.org/10.5958/0976-0555.2015.00095.3
  35. Shen, J., Chen, Y., Wang, Z., Zhou, A., He, M., Mao, L., Zou, H., Peng, Q., Xue, B., Wang, L., Zhang, X., Wu, S., & Lv, Y. (2014). Coated zinc oxide improves intestinal immunity function and regulates microbiota composition in weaned piglets. The British Journal of Nutrition, 111(12), 2123-2134. http://dx.doi.org/10.1017/s0007114514000300
  36. Shen, X., Song, C., & Wu, T. (2021). Effects of nano-copper on antioxidant function in copper-deprived guizhou black goats. Biological Trace Element Research, 199(6), 2201-2207. http://dx.doi.org/10.1007/s12011-020-02342-1
  37. Soufi, B., Alijoo, Y. A., Khamisabadi, H., & Khoobbakht, Z. (2022). The effect of inorganic, organic and nano-zinc sources on growth performance, blood parameters and antioxidant activity of Sanjabi lambs. Journal of Ruminant Research, 9(4), 19-32.
  38. Spears, J. W., & Weiss, W. P. (2008). Role of antioxidants and trace elements in health and immunity of transition dairy cows. The Veterinary Journal, 176(1), 70-76. http://dx.doi.org/10.1016/j.tvjl.2007.12.015
  39. Suttle, N. F. (2010). Mineral Nutrition of Livestock. 4th Wallingford, Oxfordshire, CABI
  40. Teixeira, A. G., Stephens, L., Divers, T. J., Stokol, T., & Bicalho, R. C. (2015). Effect of crofelemer extract on severity and consistency of experimentally induced enterotoxigenic Escherichia coli diarrhea in newborn Holstein calves. Journal of Dairy Science, 98(11), 8035-8043. http://dx.doi.org/10.3168/jds.2015-9513
  41. Ulutaş, E., Eryavuz, A., Bülbül, A., Rahman, A., Küçükkurt, İ., & Uyarlar, C. (2020). Effect of zinc supplementation on haematological parameters, biochemical components of blood and rumen fluid, and accumulation of zinc in different organs of goats. Pakistan Journal of Zoology, 52. http://dx.doi.org/10.17582/journal.pjz/20190603230641
  42. Wang, B., Yang, C. T., Diao, Q. Y., & Tu, Y. (2018). The influence of mulberry leaf flavonoids and Candida tropicalis on antioxidant function and gastrointestinal development of preweaning calves challenged with Escherichia coli O141:K99. Journal of Dairy Scienc, 101(7), 6098-6108. http://dx.doi.org/10.3168/jds.2017-13957
  43. Wei, J., Ma, F., Hao, L., Shan, Q., & Sun, P. (2019). Effect of differing amounts of zinc oxide supplementation on the antioxidant status and zinc metabolism in newborn dairy calves. Livestock Science, 230, 103819. http://dx.doi.org/10.1016/j.livsci.2019.103819
  44. Zaboli, K., Aliarabi, H., Bahari, A., & Abbasalipourkabir, R. (2013). Role of dietary nano-zinc oxide on growth performance and blood levels of mineral: A study on Iranian Angora (Markhoz) goat kids. Journal of Pharmaceutical and Health Science, 2(1), 19-26.
CAPTCHA Image