اثر مواد فعال سطحی (سورفاکتانت‌ها) بر ویژگی‌های ظاهری و غلظت مواد مغذی دانه ذرت فرآوری شده با روش بخارپز- پولکی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم دامی، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران

2 گروه شیمی، دانشکده علوم، دانشگاه فردوسی مشهد، مشهد، ایران

چکیده

در این آزمایش از روش بخارپز- پولکی (SF) برای فرآوری دانه ذرت با استفاده از بخار اشباع در دمای 96 درجه سلسیوس به‌مدت 50 دقیقه استفاده شد. در مرحله پخت از مواد فعال سطحی (سورفاکتانت‌ها) شیمیایی یا گیاهی استفاده شد. تیمارها‌ی آزمایشی عبارت بودند از: دانه‌های ذرت پولکی خام (CON)، دانه‌های ذرت پولکی عمل‌آوری شده با توئین‌80 (TW80)، دانه‌های ذرت پولکی عمل‌آوری شده با آلوم (AL)، دانه‌های ذرت پولکی عمل‌آوری شده با سدیم دودسیل سولفات (SD) و دانه‌های ذرت پولکی عمل‌آوری شده با عصاره برگ گیاه برگ بو (LN). با استفاده از میکروسکوپ الکترونی روبشی (SEM)، شکل ظاهری ریزذرات نشاسته در دانه‌های بخارپز و پخار پز- پولکی شده مورد بررسی قرار گرفت. علاوه‌براین، ویژگی‌های فیزیکی، غلظت مواد مغذی، بخش‌های پروتئین و کربوهیدرات نیز تعیین شد. ویژگی‌های فیزیکی شامل جرم توده‌ای، ظرفیت نگهداری آب، حجم و جرم حجمی تحت تأثیر تیمارهای آزمایشی قرار گرفتند. جرم توده‌ای و ظرفیت نگهداری آب در LN به‌طور معنی‌داری بیشتر از AL و SD بود. دانه‌های فرآوری شده با توئین‌80 به‌طور معنی‌داری حجم بیشتری در مقایسه با سایر دانه‌های پولکی داشتند. همچنین مقایسات مستقل LN در مقابل SD و AL نشان داد که استفاده از LN باعث کاهش معنی‌داری حجم در دانه‌های ذرت شد. غلظت چربی، پروتئین خام و الیاف نامحلول در شوینده خنثی دانه ذرت پولکی به‌طور معنی‌داری تحت تأثیر استفاده از سورفاکتانت‌ها قرار گرفت. غلظت پروتئین خام در LN به‌طور معنی‌داری بیشتر از AL و SD بود. مقایسه مستقل SD و AL نشان داد که استفاده از AL باعث افزایش معنی‌دار غلظت الیاف نامحلول در شوینده خنثی دانه‌های عمل‌آوری می‌شود. غلظت بخش‌های مجموع کربوهیدارت‌ها، کربوهیدارت‌های غیرالیافی، الیاف قابل هضم و الیاف غیر قابل هضم تحت تأثیر تیمارهای آزمایشی قرار گرفتند. غلظت مجموع کربوهیدرات‌ها و کربوهیدرات‌های غیرالیافی در LN به‌طور معنی‌داری کمتر از سایر دانه‌های عمل‌آوری شده بود. غلظت الیاف قابل هضم و غیر قابل هضم AL بیشتر از SD بود. به‌طور کلی، نتایج این آزمایش نشان داد که استفاده از سورفاکتانت‌ها در مرحله پخت با بخار در روش فرآوری بخارپز- پولکی موجب تغییر بهینه ویژگی‌های فیزیکی، شکل ظاهری ریزذرات نشاسته و غلظت بخش‌های کربوهیدرات دانه ذرت می‌شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The Effect of Adding Surfactants on Appearance Specification and Nutrients Content of Processed Corn Grain using Steam-Flaked Technique

نویسندگان [English]

  • Farzaneh Mohamady 1
  • Mohsen Danesh Mesgaran 1
  • Seyed Alireza Vakili 1
  • Abdolmansour Tahmasebi 1
  • Mohammadreza Hosseindokht 2
1 Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran.
2 Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
چکیده [English]

Introduction[1]: Corn grain is one of the main sources of energy in the dairy cow diets; about 70% of corn's weight is due to starch. The starch granule is the basic unit of starch in corn endosperm and is a part of the starch–protein matrix. Its digestibility is influenced by the starch-protein matrix, granule morphology and size, as well as the degree of granule crystallinity and extent of granule damage. Cereal starch digestibility in ruminants is improved by an average of 10% by the application of heat, moisture and pressure during the steam flaking process. Depending on the processing method, the digestion site shifts from the rumen to the intestine, which is a significant factor in determining the rate of nutrient absorption that influences animal performance. Surface-active, foam-forming properties can increase water penetration and, consequently, the digestibility of processed grain. The most significant physicochemical property of surfactants is their ability to reduce surface tension, which is known as their interface activity. Low surface tension in rumen fluid may expedite food absorption and digestion. The main aim of this study was to evaluate the effect of various surfactants on nutrients content and appearance specification of steam-flacked corn grain.  
 
 Materials and Methods: In the present study, a steamed-flaked (SF) method was applied to processed corn grains. During the steaming, grains did not treated with the surfactants (CON) or treated with 1% Tween 80 (TW80),1% sodium dodecyl sulfate (SD), 1% Alum (AL), and 1% extract of Laurus nobilis (LN) as surfactants. The ethanolic extract of Laurus nobilis (Ln) was provided by dissolving 100 g of dried and ground Ln in 500 mL of 96% v/v ethanol/water and shaking for 72 hours, then, the plant extract was prepared using evaporating method. Non-treated or treated corn grains were then steamed for approximately 35 minutes at 96 °C. Scanning electron microscopy (SEM) to achieve the best scanning quality of starch granule structure and surface in processed corn grain with the surfactants through steam-flaked were taken. The samples were assayed at 25 kV accelerating voltage and 2500x magnification. Physical properties (Giger-Reverdin, 2000) and chemical composition (AOAC, 2012) were then examined. The Robertson and Eastwood, (1998) method was used to calculate water holding capacity. According to Aghajani et al. (2012), the grain density was calculated as the ratio of the grain's mass to the sample's particle volume. Crude protein and carbohydrate fractionations were carried out (Higgs et al., 2015). Protein fractions reported as NH3 (A1), soluble protein (A2), insoluble true protein (B1), fiber-bound protein (B2) and indigestible protein (C). Carbohydrates were divided into five fractions including A4 (water soluble carbohydrates or sugar), B1 (starch), B2 (soluble fiber), B3 (digestible fiber), and CC (ingestible fiber).
 
Results and Discussion: Scanning electron microscopy (SEM) analysis displayed that the processed corn grain using surfactants had larger surface starch granules than the SFC. All physical properties of the processed corn grain were significantly influenced by the chemically and physically procedures applied (P< 0.05). The highest bulk density was shown in LN (P< 0.05). Flaked corn grain treated with Tween 80 (TW80) had significantly (P< 0.05) higher volume compared with those of the others. The CP content of LN was higher than those of SD, TW80 and AL. Furthermore, the NDF content in SD was higher than that of LN and AL (P< 0.05). The total carbohydrates, non-fiber carbohydrates, digestible fiber and Indigestible fiber fractions of the processed corn grain were affected by the surfactant (P<0.05). The total carbohydrates and non-fiber carbohydrates fractions in LN were lower than that of the TW80, SD and AL. Digestible fiber and Indigestible fiber fractions were greater (P< 0.05) in AL than SD.
 
Conclusion: All processed grains showed a different starch granule structure and surface compared with that of CON. Our findings illustrated that treating corn grain with the surfactants, applied in the present study during the steaming, improved the physically and chemically properties of the grain. Various alterations in carbohydrate fractions were traced in processed corn grain with the surfactants through steam-flaked procedure. The grain treated with extract of Laurus nobilis showed a reduction in both non fiber carbohydrates and soluble fiber concentration.







 




 

کلیدواژه‌ها [English]

  • Bulk density
  • Carbohydrate
  • Steamed
  • Surfactant
  • Tween 80

©2023 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source.

  1. Aghajani, N., Ansaripour, E., & Kashaninejad, M. (2012). Effect of moisture content on physical properties of barley seeds. Journal of Agricultural Science and Technology, 14(1), 161-172. https://jast.modares.ac.ir/browse.php?a_code=A-10-1000-8472&slc_lang=en&sid=23
  2. Ahn, J. S., Shin, J. S., Kim, M. J., Son, G. H., Kwon, E. G., Shim, J. Y., Kim, I. Y., Cho, S. M., Cho, S. R., & Park, B. K. (2019). A study on comparative feeding value of corn flakes according to temperature and retention time in the pressurized steam chamber. Journal of Animal Science and Technology61(3), 170. 5187/jast.2019.61.3.170
  3. Allen, M. S., Longuski, R. A., & Ying, Y. (2008). Endosperm type of dry ground corn grain affects ruminal and total tract digestion of starch in lactating dairy cows. Journal of Dairy Science 91(Suppl 1), 529.
  4. Anvari, S., Hajfarajollah, H., Mokhtarani, B., & Noghabi, K. A. (2015). Physiochemical and thermodynamic characterization of lipopeptide biosurfactant secreted by Bacillus tequilensisRSC Advances5(111), 91836-91845. 10.1039/C5RA17275F
  5. AOAC, (2012). Official Methods of Analysis, 19th Association of Official Analytical Chemists, Washington, DC, 121-130. . 9780935584837, 0935584838
  6. Atkin, N. J., Abeysekera, R. M., & Robards, A. W. (1998). The events leading to the formation of ghost remnants from the starch granule surface and the contribution of the granule surface to the gelatinization endotherm. Carbohydrate Polymers36(2-3), 193-204. https://doi.org/10.1016/S0144-8617(98)00002-2
  7. Azizi, M. H., & Rao, G. V. (2005). Effect of surfactant in pasting characteristics of various starches. Food Hydrocolloids19(4), 739-743. https://doi.org/10.1016/j.foodhyd.2004.08.003
  8. Beauchemin, K. A., Yang, W. Z., & Rode, L. M. (2001). Effects of barley grain processing on the site and extent of digestion of beef feedlot finishing diets. Journal of Animal Science79(7), 1925-1936. https://doi.org/10.2527/2001.7971925x
  9. Bell, L. N., & Labuza, T. P. (2000). Pratical Aspects of Moisture Sorption Isotherm Measurement and Use, 2nd Editio
    9781891127182, 1891127187
  10. Bengochea, W. L., Lardy, G. P., Bauer, M. L., & Soto-Navarro, S. A. (2005). Effect of grain processing degree on intake, digestion, ruminal fermentation, and performance characteristics of steers fed medium-concentrate growing diets. Journal of Animal Science83(12), 2815-2825. https://doi.org/10.2527/2005.83122815x
  11. Butrim, S. M., Litvyak, V. V., & Moskva, V. V. (2009). A study of physicochemical properties of extruded starches of varied biological origin. Russian Journal of Applied Chemistry82, 1195-1199. 1134/S1070427209070076
  12. Crison, J. R., Weiner, N. D., & Amidon, G. L. (1997). Dissolution media for in vitro testing of water‐insoluble drugs: Effect of surfactant purity and electrolyte on in vitro dissolution of carbamazepine in aqueous solutions of sodium lauryl sulfate. Journal of Pharmaceutical Sciences86(3), 384-388. https://doi.org/10.1021/js960105t
  13. Crocker, L. M., DePeters, E. J., Fadel, J. G., Perez-Monti, H., Taylor, S. J., Wyckoff, J. A., & Zinn, R. A. (1998). Influence of processed corn grain in diets of dairy cows on digestion of nutrients and milk composition. Journal of Dairy Science81(9), 2394-2407. https://doi.org/10.3168/jds.S0022-0302(98)70131-6
  14. Domby, E. M., Anele, U. Y., Gautam, K. K., Hergenreder, J. E., Pepper-Yowell, A. R., & Galyean, M. L. (2014). Interactive effects of bulk density of steam-flaked corn and concentration of Sweet Bran on feedlot cattle performance, carcass characteristics, and apparent total tract nutrient digestibility. Journal of Animal Science92(3), 1133-1143. https://doi.org/10.2527/jas.2013-7038
  15. Espinosa, M. E. R., Guevara-Oquendo, V. H., Newkirk, R. W., & Yu, P. (2020). Effect of heat processing methods on the protein molecular structure, physicochemical, and nutritional characteristics of faba bean (low and normal tannin) grown in western Canada. Animal Feed Science and Technology269, 114681. https://doi.org/10.1016/j.anifeedsci.2020.114681
  16. Giger-Reverdin, S. (2000). Characterisation of feedstuffs for ruminants using some physical parameters. Animal Feed Science and Technology86(1-2), 53-69. https://doi.org/10.1016/S0377-8401(00)00159-0
  17. Gómez, L. M., Posada, S. L., & Olivera, M. (2016). Starch in ruminant diets: a review. Revista Colombiana de Ciencias Pecuarias29(2), 77-90.
  18. Goto, M., Bae, H., Lee, S. S., Yahaya, M. S., Karita, S., Wanjae, K., & Cheng, K. J. (2003). Effects of surfactant Tween 80 on forage degradability and microbial growth on the in vitro rumen mixed and pure cultures. Asian-Australasian Journal of Animal Sciences16(5), 672-676. org/10.5713/ajas.2003.672
  19. Gutierrez, B. H., Alvarez, E. G., Montano, M. F., Salinas-Chavira, J., Torrentera, N. G., & Zinn, R. A. (2018). Influence of flake density and tempering on the feeding value of steam-flaked corn for feedlot cattle. Journal of Applied Animal Research46(1), 155-158. https://doi.org/10.1080/09712119.2017.1278699
  20. Higgs, R. J., Chase, L. E., Ross, D. A., & Van Amburgh, M. E. (2015). Updating the cornell net carbohydrate and protein system feed library and analyzing model sensitivity to feed inputs. Journal of Dairy Science98(9), 6340-6360. https://doi.org/10.3168/jds.2015-9379
  21. Hristov, A. N., Zaman, S., VanderPol, M., Szasz, P., Huber, K., & Greer, D. (2007). Effect of a saponin-based surfactant and aging time on ruminal degradability of flaked corn grain dry matter and starch. Journal of animal science85(6), 1459-1466. https://doi.org/10.2527/jas.2006-467
  22. Hu, G., Burton, C., & Yang, C. (2010). Efficient measurement of amylose content in cereal grains. Journal of Cereal Science51(1), 35-40. https://doi.org/10.1016/j.jcs.2009.08.007
  23. Ingle, A. P., Chandel, A. K., & da Silva, S. S. (Eds.). (2020). Lignocellulosic Biorefining Technologies. Wiley-Blackwell. 1002/9781119568858
  24. Kang, H., Lee, M., Jeon, S., Lee, S. M., Lee, J. H., & Seo, S. (2021). Effect of flaking on the digestibility of corn in ruminants. Journal of Animal Science and Technology63(5), 1018. 5187/jast.2021.e91
  25. Kim, W., Gamo, Y., Sani, Y. M., Wusiman, Y., Ogawa, S., Karita, S., & Goto, M. (2006). Effect of Tween 80 on hydrolytic activity and substrate accessibility of carbohydrolase I (CBH I) from Trichoderma virideAsian-Australasian Journal of Animal Sciences19(5), 684-689. org/10.5713/ajas.2006.684
  26. Kokić, B., Dokić, L., Pezo, L., Jovanović, R., Spasevski, N., Kojić, J., & Hadnađev, M. (2022). Physicochemical changes of heat-treated corn grain used in ruminant nutrition. Animals12(17), 2234. https://doi.org/10.1016/0377-8401(93)90061-N
  27. Kokić, B., Dokić, L., Pezo, L., Jovanović, R., Spasevski, N., Kojić, J., & Hadnađev, M. (2022). Physicochemical changes of heat-treated corn grain used in ruminant nutrition. Animals12(17), 2234. https://doi.org/10.3390/ani12172234
  28. Lee, S. S., & Ha, J. K. (2003). Influences of surfactant Tween 80 on the gas production, cellulose digestion and enzyme activities by mixed rumen microorganisms. Asian-Australasian Journal of Animal Sciences16(8), 1151-1157. doi:10.5713/ajas.2003.1151.
  29. Li, Q., Shi, M., Shi, C., Liu, D., Piao, X., Li, D., & Lai, C. (2014). Effect of variety and drying method on the nutritive value of corn for growing pigs. Journal of Animal Science and Biotechnology5, 1-7. https://link.springer.com/article/10.1186/2049-1891-5-18#citeas
  30. Liu, Y., Ran, T., Tan, Z., Tang, S., & Wang, P. (2013). Effects of surface tension and specific surface areas on in vitro fermentation of fiber. Acta Veterinaria et Zootechnica Sinica44, 901-910. 11843/j.issn.0366-6964.2013.06.011
  31. Luciano, A., Tretola, M., Ottoboni, M., Baldi, A., Cattaneo, D., & Pinotti, L. (2020). Potentials and challenges of former food products (food leftover) as alternative feed ingredients. Animals10(1), 125. https://doi.org/10.3390/ani10010125
  32. McAllister, T. A., & Cheng, K. J. (1996). Microbial strategies in the ruminal digestion of cereal grains. Animal Feed Science and Technology62(1), 29-36. https://doi.org/10.1016/S0377-8401(96)01003-6
  33. Rahimi, A., Naserian, A. A., Valizadeh, R., Tahmasebi, A. M., Dehghani, H., Sung, K. I., & Nejad, J. G. (2020). Effect of different corn processing methods on starch gelatinization, granule structure alternation, rumen kinetic dynamics and starch digestion. Animal Feed Science and Technology268, 114572. https://doi.org/10.1016/j.anifeedsci.2020.114572
  34. Reynolds, W. K., Hunt, C. W., Eckert, J. W., & Hall, M. H. (1992). Evaluation of the feeding value of barley as affected by variety and location using near infrared reflectance spectroscopy. In  West. Sec. Amer. Soc. Anim. Sci, 43, 498-501., 43, 498-501. 19941407132
  35. Robertson, J. A., & Eastwood, M. A. (1981). An investigation of the experimental conditions which could affect water‐holding capacity of dietary fibre. Journal of the Science of Food and Agriculture32(8), 819-825. https://doi.org/10.1002/jsfa.2740320811
  36. Rose, R., Rose, C. L., Omi, S. K., Forry, K. R., Durall, D. M., & Bigg, W. L. (1991). Starch determination by perchloric acid vs enzymes: Evaluating the accuracy and precision of six colorimetric methods. Journal of Agricultural and Food Chemistry39(1), 2-11. https://doi.org/10.1021/jf00001a001
  37. Safaei, K., & Yang, W. (2017). Effects of grain processing with focus on grinding and steam-flaking on dairy cow performance. In Herbivores. IntechOpen. https://doi.org/10.1111/jpn.12565
  38. Samuelson, K. L., Hubbert, M. E., Galyean, M. L., & Löest, C. A. (2016). Nutritional recommendations of feedlot consulting nutritionists: the 2015 New Mexico State and Texas Tech University survey. Journal of Animal Science94(6), 2648-2663. https://doi.org/10.2527/jas.2016-0282
  39. Schiff, A. P., Trotta, R. J., Holder, V., Kreikemeier, K. K., & Harmon, D. L. (2023). In vitro gas production kinetics are influenced by grain processing, flake density, starch retrogradation, and Aspergillus oryzae fermentation extract containing α-amylase activity. Journal of Animal Science101, skad031. https://doi.org/10.1093/jas/skad031
  40. Sindt, J. J., Drouillard, J. S., Titgemeyer, E. C., Montgomery, S. P., Loe, E. R., Depenbusch, B. E., & Walz, P. H. (2006). Influence of steam-flaked corn moisture level and density on the site and extent of digestibility and feeding value for finishing cattle. Journal of Animal Science84(2), 424-432. https://doi.org/10.2527/2006.842424x
  41. Song, X., Zuo, G., & Chen, F. (2018). Effect of essential oil and surfactant on the physical and antimicrobial properties of corn and wheat starch films. International Journal of Biological Macromolecules107, 1302-1309. https://doi.org/10.1016/j.ijbiomac.2017.09.114
  42. Stefanova, G., Girova, T., Gochev, V., Stoyanova, M., Petkova, Z., Stoyanova, A., & Zheljazkov, V. D. (2020). Comparative study on the chemical composition of laurel (Laurus nobilis) leaves from Greece and Georgia and the antibacterial activity of their essential oil. Heliyon6(12). 10.1016/j.heliyon.2020.e05491
  43. Subaedah, S. T., Edy, E., & Mariana, K. (2021). Growth, yield, and sugar content of different varieties of sweet corn and harvest time. International Journal of Agronomy2021, 1-7. https://doi.org/10.1155/2021/8882140
  44. Tang, S. X., Dang, T., Tan, Z. L., Wu, D. Q., Yan, Q. X., & Kang, J. H. (2021). Effects of nonionic surfactant source and surface tension on in vitro fermentation characteristics of cereal straws. Animal Feed Science and Technology276, 114912. https://doi.org/10.1016/j.anifeedsci.2021.114912
  45. Trotta, R. J., Kreikemeier, K. K., Royle, R. F., Milton, T., & Harmon, D. L. (2022). Corn processing, flake density, and starch retrogradation influence ruminal solubility of starch, fiber, protein, and minerals. Journal of Animal Science100(6), skac149. . https://doi.org/10.1093/jas/skab298
  46. Van Amburgh, M. E., Collao-Saenz, E. A., Higgs, R. J., Ross, D. A., Recktenwald, E. B., Raffrenato, E., Chase, LE., Overton, TR., Mills, JK & Foskolos, A. (2015). The Cornell Net Carbohydrate and Protein System: Updates to the model and evaluation of version 6.5. Journal of Dairy Science98(9), 6361-6380. https://doi.org/10.3168/jds.2015-9378
  47. Van Soest, P. V., Robertson, J. B., & Lewis, B. A. (1991). Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science74(10), 3583-3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2
  48. Wulff, D., Chan, A., Liu, Q., Gu, F. X., & Aucoin, M. G. (2020). Characterizing internal cavity modulation of corn starch microcapsules. Heliyon6(10). 1016/j.heliyon.2020.e04831
  49. Xin, H., Khan, N. A., & Yu, P. (2021). Steam pressure induced changes in carbohydrate molecular structures, chemical profile and in vitro fermentation characteristics of seeds from new Brassica carinataAnimal Feed Science and Technology276, 114903. https://doi.org/10.1016/j.anifeedsci.2021.114903
  50. Xin, H., Sun, F., Sun, K., Fu, Q., Li, Y., Zhang, Y., Rahman, S. U., & Khan, N. A. (2020). Batch-to-batch variation in carbohydrates molecular structures, nutritive value and biodegradation characteristics in corn coproducts. Animal Feed Science and Technology263, 114458. https://doi.org/10.1016/j.anifeedsci.2020.114458
  51. Xu, N., Wang, D., & Liu, J. (2019). Variance of zein protein and starch granule morphology between corn and steam flaked products determined starch ruminal degradability through altering starch hydrolyzing bacteria attachment. Animals9(9), 626. https://doi.org/10.3390/ani9090626
  52. Zhong, R. Z., Li, J. G., Gao, Y. X., Tan, Z. L., & Ren, G. P. (2008). Effects of substitution of different levels of steam-flaked corn for finely ground corn on lactation and digestion in early lactation dairy cows. Journal of Dairy Science91(10), 3931-3937. https://doi.org/10.3168/jds.2007-0957
  53. Zinn, R. A., F. N. Owens, & R. A. Ware. (2002). Flaking corn: Processing mechanics, quality standards, and impacts on energy availability and performance of feedlot cattle.  Journal of Animal Science . 80, 1145–1156. https://doi.org/10.2527/2002.8051145x.
CAPTCHA Image