اثر سطوح مختلف فیبر خام و چربی جیره بر عملکرد جوجه‌های گوشتی جوان با استفاده از مدل رویه‌ی پاسخ

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم دامی، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران

2 گروه علوم دامی، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران.

چکیده

این مطالعه به‌منظور بررسی اثر سطوح مختلف تفاله­ی چغندر قند (صفر، 75/1 و 5/3 درصد)، پیه گاو (صفر، 5/0 و 1 درصد) و روغن سویا (صفر، 5/0 و 1 درصد) بر عملکرد جوجه­های گوشتی جوان با استفاده از طرح مرکب مرکزی و مدل رویه­ی پاسخ (RSM) در دو دوره­ی سنی 7-1 و 14-7 روزگی انجام شد. تعداد 420 قطعه جوجه­ی گوشتی یک‌روزه سویه­ی راس 308، به­طور تصادفی به 60 قفس متابولیکی (در هر قفس 7 قطعه جوجه) اختصاص داده شد. نتایج مدل­های رویه­ی پاسخ نشان داد که در سن 7 روزگی فقط اثر خطی و در سن 14 روزگی هر سه اثر خطی، توان دوم و اثرات متقابل فاکتورهای تحت بررسی برای دو صفت میانگین افزایش وزن روزانه و ضریب تبدیل غذایی تأثیر معنی‌داری داشتند. بیشترین افزایش وزن روزانه­ی جوجه‌ها در دوره­ی سنی 7-1 روزگی با تغذیه­ی 15/0 درصد تفاله­ی چغندر قند، صفر درصد پیه گاو و صفر درصد روغن سویا و کم­ترین ضریب تبدیل غذایی با تغذیه­ی 07/0 درصد تفاله­ی چغندر قند، صفر درصد پیه گاو و 28/0 درصد روغن سویا به دست آمد. در دوره­ی سنی 14-7 روزگی بیشترین افزایش وزن روزانه و کم­ترین ضریب تبدیل غذایی مربوط به جیره­ی ­غذایی حاوی 3/0 درصد تفاله­ی چغندر قند، صفر درصد پیه و 5/0 درصد روغن سویا بود. نتایج آزمایش نشان داد که طرح مرکب مرکزی و مدل رویه­ی پاسخ، کارآیی لازم برای توصیف روابط میان سطوح مختلف تفاله­ی چغندر قند، پیه گاوی و روغن سویا و توانایی پیش بینی نقطه­ی بهینه­ی سطح هر ماده­ی خوراکی به منظور رسیدن به بهترین عملکرد را دارد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effects of different levels of dietary fiber and fat on the growth performance of young broiler chicks using response surface methodology

نویسندگان [English]

  • Fateme Aziz aliabadi 1
  • Ahmad Hassanabadi 2
  • Abolghasem Golian 1
  • Saeed Zerehdaran 2
1 Department of Animal Science ,Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran,
2 Department of Animal Science ,Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran,
چکیده [English]

Introduction: This research was undertaken to evaluate the effects of different levels of dietary fiber and fat on the growth performance of broiler chicks using the central composite design and response surface methodology at 1-7 d and 7-14 d of age. The response surface methodology is a set of statistical and mathematical methods that help the researcher in design of experiment within the incomplete factorial designs. In this method, the obtained data is converted into a mathematical model and the obtained model is optimized to determine the values of the input variables in order to achieve the best output.

Materials and Methods: This study was carried out at the Research Farm, Faculty of Agriculture, Ferdowsi University of Mashhad, Iran. A total of 420 one-day-old Ross 308 male broiler chicks with average weights of 46.90 ± 1.03 g were randomly distributed into 60 battery brooder cages. According to the scheme produced by 3-levels, 3-factors central composite design (CCD), 60 cages of 7 birds each were assigned to 15 experimental diets containing 3 levels of sugar beet pulp (SBP; 0.00, 1.75 and 3.5%), tallow (T; 0.00, 0.50 and 1.00%), and soybean oil (SO; 0.00, 0.50 and 1.00%), from 1 to 7 d and 7 to 14 d of age. Diet samples were analyzed for neutral detergent fiber, acid detergent fiber and insoluble fiber. Soluble fiber was calculated from the difference of total crude fiber from its insoluble fraction. Fatty acids profiles of tallow and soybean oil were determined using gas chromatography. The average daily body weight gain (ADG) was calculated from the weight gain of birds in each cage. Feed conversion ratio (FCR) was corrected for mortality and represented as grams of feed consumed by all birds divided by grams of body weight gain. The experimental data (60 data lines) obtained by CCD were fitted to the second-order polynomial equation by Minitab 2017.

Results and Discussion: The polynomial equation from raw experimental data for ADG (R2 = 0.79; root MSE = 1.65) and FCR (R2 = 0.88; root MSE = 0.14) at 7d of age was generated as follows:

 ADG (g/bird) = 27.54 – 1.07 × SBP – 5.57 × T – 1.99 × SO – 0.17 × SBP × SBP + 1.95 × T × T + 1.77 × SO × SO – 0.45 × SBP × T – 0.05 × SBP × SO – 0.71 × T × SO

 FCR= 0.87 – 0.03 × SBP + 0.38 × T – 0.08 × SO + 0.05 × SBP × SBP – 0.29 × T × T + 0.13 × SO × SO + 0.15 × SBP × T + 0.04 × SBP × SO + 0.002 × T × SO

The estimated parameters for SBP and T terms in the ADG model, and SBP, T, SO, SBP×SBP and SBP×T terms in the FCR model were significant. In the ADG and FCR models the linear terms had higher contribution to explain existing variation in the response of the chicks. Maximum ADG was observed with diet containing 0.15% SBP, 0.00% T and 0.00% SO and minimum FCR was observed with diet containing 0.07% SBP, 0.00% T and 0.28% SO. The predicted ADG and FCR at the optimal points were 27.54 g/bird per day and 0.96, respectively. The coefficient estimates for ADG and FCR models and the corresponding absolute t-values showed that among the investigating nutrients and their interactions, the linear effect of dietary SBP the largest effect on ADG and FCR of chicks. Lack of fit for both ADG and FCR models was insignificant, showing that the observed data are in good agreement with the model. The polynomial equation from raw experimental data for ADG (R2 = 0.78; root MSE = 3.60) and FCR (R2 = 0.80; root MSE = 0.14) at 14d of age was generated as follows:

ADG (g/bird) = 52.50 – 7.81 × SBP – 26.01 × T + 14.37 × SO + 0.66 × SBP × SBP + 11.22 × T × T – 14.17 × SO × SO + 3.58 × SBP × T + 0.27 × SBP × SO – 3.46 × T × SO

FCR = 1.01 + 0.07 × SBP + 0.35 × T – 0.26 × SO + 0.02 × SBP × SBP – 0.10 × T × T + 0.26 × SO × SO + 0.03 × SBP × T + 0.03 × SBP × SO + 0.14 × T × SO

The estimated parameters for SBP, T, T×T, SO×SO and SBP×T terms in the ADG model, and SBP, T and SO terms in the FCR model were significant. In the ADG and FCR models the linear terms had higher contribution to explain existing variation in the response of the chicks. Maximum ADG and minimum FCR were observed with diet containing 0.30% SBP, 0.00% T and 0.50% SO. The predicted ADG and FCR at the optimal points were 56.65 g/bird per day and 0.95, respectively. The coefficient estimates for ADG and FCR models and the corresponding absolute t-values show that among the investigating nutrients and their interactions, the linear effect of dietary SBP the largest effect on ADG and FCR of chicks. Lack of fit for both ADG and FCR models was significant, showing that a more complicated modeling method or other testing with extra variables should be made.

Conclusion: Current results showed that with increasing age and evolution of the birds’ gastrointestinal tract, the negative effects of soluble fibers were decreased and the broilers will be able to digest and absorb fats more efficiently. Central composite design reduces the number of trials and costs. Response surface model can be used to describe the relationship of nutrients to reach the optimum point.

کلیدواژه‌ها [English]

  • Broiler
  • Central composite design
  • Fat
  • Fiber
  • Response surface methodology
  1. Ademola, S. G., M. D. Shittu, M. O. Ayansola, T. E. Lawal, and G. O. Tona. 2013. Effect of maxigrain supplement on growth performance, economic indices and haematological parameters of heat-stress broilers fed three dietary fiber sources. Online Journal of Animal and Feed Research, 4: 159-164. Corpus ID: 111236961.
  2. Ahmadi, H., and A. Golian. 2011. Response surface and neural network models for performance of broiler chicks fed diets varying in digestible protein and critical amino acids from 11 to 17 days of age. Poultry Science, 90: 2085-2096. 3382/ps.2011-01367
  3. Arosemena, A., E. J. DePeters, and J. G. Fadel. 1995. Extent of variability in nutrient composition within selected by-product feedstuffs. Animal Feed Science and Technology, 54: 103-120. 1016/0377-8401(95)00766-G
  4. Aslan, N. 2007. Application of response surface methodology and central composite rotatable design for modeling the influence of some operating variables of a multi-gravity separator for chromite concentration. Powder Technology, 86: 769-776. 1016/j.powtec.2007.10.002
  5. Association of Official Analytical Chemists (AOAC). Official Methods of Analysis, 18th edition. AOAC. USA.
  6. Azman, M. A., I. H. Cerci, and N. Birben. 2005. Effect of various dietary fat sources on performance and body fatty acid composition of broiler chickens. Turkish Journal of Veterinary and Animal Science, 29: 811-819.
  7. Bartov, I. 1988. Fats in poultry nutrition. Poultry International, 27: 70-72.
  8. Box, G. E. P., W. G. Hunter, and J. S. Hunter. 1987. Statistics for Experimenters: An Introduction to Design, Data Analysis and Model Building. Wiley, NY.
  9. Chen, H. Y., and S. H. Chiang. 2005. Effect of dietary polyunsaturated/saturated fatty acid ratio on heat production and growth performance of chicks under different ambient temperature. Animal Feed Science and Technology, 120: 299-308. 1016/j.anifeedsci.2004.11.010
  10. Endy, M. J., G. L. Compbell, and H. L. Classen. 1989. The effect of beta glucanase supplementation on nutrient digestibility and growth in broiler given diets containing barley, oats, grouts or wheat. Animal Feed Science and Technology, 25: 193-200. 1016/0377-8401(89)90119-3
  11. Faria Filho, D. E., P. Rosa, K. A. A. Torres, M. Macari, and R. L. Furlan. 2008. Response surface models to predict broiler performance and applications for economic analysis. Brazilian Journal of Poultry Science, 10: 131-138. 10.1590/S1516-635X2008000200009
  12. Freitas, E. R., N. K. Sakomura, R. Neme, and A. L. dos. Santos. 2005. Energetic value of soybean acid oil in poultry nutrition. Brazilian Journal of Poultry Science, 40: 3-8.
  13. Ghanaatparast-Rashti, M., M. Mottaghitalab, and H. Ahmadi. 2018. In ovo feeding of nutrients and its impact on post-hatching water and feed deprivation up to 48 hr, energy status and jejunal morphology of chicks using response surface models. Journal of Animal Physiology and Animal Nutrition, 102: 806-817. 1111/jpn.12838
  14. Guzmán, P., B. Saldana, H. A. Mandalawi, A. Pérez-Bonilla, R. Lázaro, and G. G. Mateos. 2015. Productive performance of brown-egg laying pullets from hatching to 5 weeks of age as affected by fiber inclusion, feed form, and energy concentration of the diet. Poultry Science, 94: 249–261. 3382/ps/peu072
  15. Hanrahan, G., and K. Lu. 2006. Application of factorial and response surface methodology in modern experimental design and optimization. Critical Reviews in Analytical Chemistry, 36: 141-151. 1080/10408340600969478
  16. Hosseini-Vashan, S. J., A. Golian, A. Yaghoubfar, A. Raji, and Nassiri Moghaddam. 2014. Evaluation of the effects of tomato pomace, herbal oil sources and tallow on blood lipids, plasma enzyme activity and antioxidant system of heat stressed broiler chickens. Iranian Journal of Animal Science, 98: 64-75. (In Persian). 10.22092/asj.2014.100203
  17. Jiménez-Moreno, E., J. M. González-Alvarado, A. González-Serrano, Lázaro and G. G. Mateos. 2009. Effect of dietary fiber and fat on performance and digestive traits of broilers from one to twenty-one days of age. Poultry Science, 88: 2562-2574. 10.3382/ps.2009-00179
  18. Jiménez-Moreno, E., M. Frikha, A. de Coca-Sinova, J. Garcıa, and G. G. Mateos. 2013. Oat hulls and sugar beet pulp in diets for broilers 1. Effects on growth performance and nutrient digestibility. Animal Feed Science and Technology, 182: 33–43. 1016/j.anifeedsci.2013.03.011
  19. Jozefiak, D., A. B. B. Jensen, and R. M. Enberg. 2006. The effect of beta-glucanase supplementation of barley- and oat-based diets on growth performance and fermentation in broiler chicken gastrointestinal tract. British Poultry Science, 47: 57-64. 1080/00071660500475145
  20. Kongo-Dia-Moukala, J. U., H. Zhang, and P. Claver Irakoze. 2011. In vitro binding capacity of bile acids by defatted corn protein hydrolysate. International Journal of Molecular Sciences, 12: 1066-1080. 3390/ijms12021066
  21. Mateos, G., R. Lázaro, and M. Gracia. 2002. The feasibility of using nutritional modifications to replace drugs in poultry feeds. Journal of Applied Poultry Research, 11: 437-452. 10.1093/japr/11.4.437
  22. Mateos, G. G., E. Jiménez-Moreno, M. P. Serrano, and R. P. Lázaro. 2012. Poultry response to high levels of dietary fiber sources varying in physical and chemical characteristics. Journal of Applied Poultry Research, 21: 156-174. 3382/japr.2011-00477
  23. Mertens, D. R., M. Allen, J. Carmany, J. Clegg, A. Davidowicz, M. Drouches, K. Frank, D. Gambin, M. Garkie, B. Gildemeister, D. Jeffress, C. S. Jeon, D. Jones, D. Kaplan, G. N. Kim, S. Kobata, D. Main, X. Moua, B. Paul, J. Robertson, D. Taysom, N. J. Thiex, J. Williams, and M. Wolf. 2002. Gravimetric determination of amylase-treated neutral detergent fiber in feeds with refluxing in beakers or crucibles: Collaborative study. Journal of AOAC International, 85: 1217-1240. PMID: 12477183
  24. Mossami, A. 2011. Effects of different inclusions of oat hulls on performance, carcass yield and gut development in broiler chickens. Institutionen for husdjurens Examensarbete 330 utfodring och vard 45 hp E-niva Swedish University of Agricultural Science Uppsala 2011 Department of Animal Nutrition and Management.
  25. Myers, R. H., and D. C. Montgomery. 2009. Response Surface Methodology: process and product optimization using designed experiments (3rd ed). John and sons publication, New York, USA, 19-39. ISBN: 978-1-118-91601-8
  26. Nemati, Z., A. Taghizadeh, G. A. Moghaddam, A. Tahmasbi, and P. Yasan. 2006. The effect of xylanase enzyme and fat type on growth performance of broilers fed wheat-based diets. Journal of Agricultural Science, 16:229-238. (In Persian). 3389/fmicb.2021.757066
  27. Rezaei, M., M. A. Karimi Torshizi, and Y. Rouzbehan. 2012. Effect of dietary fiber on intestinal morphology and performance of broiler chickens. Iranian Journal of Animal Science, 90: 52-60. (In Persian).
  28. Roma, E., D. Adamidis, R. Nikolara, A. Constantopoulos, and J. Messaritakis. 1999. Diet and chronic constipation in children: the role of fiber. Journal of Pediatric Gastroenterology and Nutrition, 28: 169-174. 1097/00005176-199902000-00015
  29. 2014. Ross 308 Broiler Nutrition Specifications. (1st ed.). Ross Broiler Ltd., Scotland, UK. (pp. 6)
  30. saki, A. A., H. R. Hematti Matin, P. Zamani, M. M. Tabatabai, and M. Vatanchian. 2011. Various ratios of pectin to cellulose affect intestinal morphology, DNA quantitation, and performance of broiler chickens. Livestock Science, 139: 237-244. 1016/j.livsci.2011.01.014
  31. Sarikhan, M., H. Shahryar, B. Gholizadeh, M. Hosseinzadeh, B. Beheshti, and A. Mahmoodnejad. 2010. Effects of insoluble fiber on growth performance, carcass traits and ileum morphological parameters on broiler chick males. International Journal of Agriculture and Biology, 12: 531-536. Corpus ID: 83386526
  32. Sklan, D., A. Smirnov, and I. Plavnik. 2003. The effect of dietary fibre on the small intestines and apparent digestion in the turkey. British Poultry Science, 44: 735-740. 1080/00071660310001643750
  33. Villaverde, C., L. Cortinas, A. C. Barroeta, S. M. Martin-Orué, and M. D. Baucells. 2004. Relationship between dietary unsaturation and vitamin E in poultry. Journal of Animal Physiology and Animal Nutrition, 88: 143-149. 1111/j.1439-0396.2003.00471.x
  34. Viveros, A., L. T. Ortiz, M. L. Rodriguez, A. Rebolé, C. Alzueta, I. Arija, C. Centeno, and A. Brenes. 2009. Interaction of dietary high-oleic-acid sunflower hulls and different fat. Poultry Science, 88: 141-151. 3382/ps.2008-00226
  35. Voelker, J. A., and M. S. Allen. 2003. Pelleted beet pulp substituted for high moisture corn: 2. Effects on digestion and rumen digestion kinetics in lactating dairy cows. Journal of Dairy Science, 86: 3553-3561. 3168/jds.S0022-0302(03)73960-5
  36. Zulkifli, I., N. N. Htin, A. R. Alimon, T. C. Loh, and M. Hair-Bejo. 2007. Dietary selection of fat by heat-stressed broiler chickens. Asian-Australasian Journal of Animal Sciences, 20: 245-251. http://www.ajas.info/journal/view.php?number=21508
CAPTCHA Image