مطالعه تغییرات، پیش‌بینی مؤلفه‌های واریانس و فراسنجه‌های ژنتیکی تابع توزیع زنده‌مانی در میش‌های نژاد کرمانی

نوع مقاله : علمی پژوهشی- ژنتیک و اصلاح دام و طیور

نویسندگان

1 گروه علوم دامی، دانشکده کشاورزی، دانشگاه شهید باهنر کرمان، کرمان، ایران

2 دانشگاه جیرفت

چکیده

در اﻳﻦ مطالعه از رﻛﻮرد­ﻫﺎی ﻃﻮل ﻋﻤﺮ 772 رأس میش داشتی اﻳﺴﺘﮕﺎه ﭘﺮورش و اﺻﻼح ﻧﮋاد گوسفند کرمانی واﻗﻊ در شهرستان شهربابک استان کرمان که ﻃﻲ ﺳﺎل­ﻫﺎی 1368 ﺗﺎ 1387 ﺟﻤﻊ­آوری ﺷﺪه بودند، استفاده شد. توزیع فراوانی علل حذف و تابع توزیع زنده­مانی میش­ها با استفاده از نرم افزار R پیش بینی شد. همچنین، از مدل ویبال و نرم افزار Matvec برای پیش­بینی اجزای واریانس و فراسنجه­های ژنتیکی صفت طول عمر به عنوان بقاء، استفاده شد. متوسط طول عمر تولیدی میش­ها در این مطالعه 72/4 سال به دست آمد که به­­طور متوسط 4/3 بره در طول عمر خود داشته­اند. بیماری بالاترین علت حذف میش­ها (53 درصد) را به خود اختصاص داد. پس از بیماری به ترتیب پیری، مشکلات باروری، تولید پایین شیر، مشکلات پستانی، کشتار آزمایشی، حادثه فیزیکی و در آخر تیپ نامناسب (5/0 درصد) بیشترین درصد حذف میش­ها را شامل شدند. با افزایش سن احتمال شرطی تلفات روند افزایشی را نشان داد، ولی برعکس آن میزان زنده­مانی تجمعی روند کاهشی نشان داد. نسبت خطر مرگ تا سن چهار سالگی به طور جزئی، ولی بعد از آن به شدت افزایش نشان داد. وراﺛﺖ­ﭘﺬﻳﺮی­ﻫﺎ در ﻣﻘﻴﺎس ﻟﮕﺎرﻳﺘﻤﻲ، ﻣﻘﻴـﺎس اوﻟﻴـﻪ و وراﺛـﺖ­ﭘـﺬﻳﺮی ﻣـﻮﺛﺮ ﻧﺴﺒﺖ ﺧﻄﺮ ﺣﺎﺻﻞ ﺷﺪه از ﻣﺪل ﭘﺪری و دارای ﺗـﺎﺑﻊ وﻳﺒـﺎل در ﺣـﺪ کم به ﺑـﺎﻻ (002/0 تا 145/0) پیش بینی شدند. نتایج حاصله بیانگر آن است که جهت افزایش  طول عمر و زنده مانی میش­ها باید علاوه بر بهبود شرایط محیطی و بهداشتی و تصمیمات مدیریتی و کاربردی به اصلاح ژنتیکی نیز اهتمام ورزید.

کلیدواژه‌ها


عنوان مقاله [English]

Study of variations, prediction of variance components and genetic parameters of survival distribution function in Kermani ewes

نویسندگان [English]

  • Mahboobeh Kord 1
  • Mohammadreza Mohammad Abadi 1
  • Ali Esmaili zadeh kashkuei 1
  • Arsalan Barazandeh 2
1 Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
2 University of Jiroft
چکیده [English]

Introduction: The Kermani sheep breed is one of the most important native breeds in Iran. It is well adapted to the harsh and undesirable environmental conditions of the southeastern part of the country. Therefore, consideration to the breeding of Kermani sheep and the improvement of the environmental and genetic conditions of this breed can contributed greatly to providing a part of the livelihood needs of the people. The longevity in the ewe is a high economic trait, because increasing the longevity will lead to a reduction in the culling rate as well as replacement costs in the herd and increasing of number of lambs. Considering that the investigation and identification of the important factors influence culling of ewes from the herd, which leads to a decrease in the yield and longevity of the animal, can be used to provide and develop a suitable strategy to promote the survival and longevity of the ewes. In addition, due to the absence of genetic parameters of production life length in Kermani sheep, the aim of this study was to study changes, prediction of components of variance and genetic parameters of survival distribution function in Kermani ewes.
Materials and Methods: In this research, longevity records of 772 heads of Kermani ewes (collected from 1989 to 2008) at the Kermani sheep station (Shahr Babak, Kerman province) were studied. The overall production life length was equal to the time between births to ewe culling. Frequency distribution for causes of culling and survival distribution function for ewes were estimated using R software. The Weibull model and Matvec software were also used for estimating variance component and genetic parameters of longevity traits as survival.
Results and Discussion: The results showed that the mean of ewe’s longevity was 4.72 years with average lambing of 3.4 in life time. The most important cause of culling was disease (53%), especially in the first three parity of the ewe. After disease, oldness, reproductive problems, low production, physical phenomenon, experimental slaughter, selling additional ewes and bad type (0.5%) are the accounted causes for remaining ewe culling, respectively. Considering that culling due to disease accounts for more than half of the deaths, prevention and treatment of diseases are important in this breed. Therefore, the type and timing of the prevalence should be investigated and preventive and therapeutic proceeding should be taken for diseases. The total amount of non-optional culling (illness, physical incidence, and aging) was about 83% of total casualties. It can be concluded that the deletion due to the low production was very small. At the age of two and three, the mortality rate was low, reaching its peak at the age of four, has declined since this age, with partial fluctuations between the ages of 5 and 6, and at the age of 7 and 8 years decline have happened. Therefore, most ewes were culled from the herd before reaching the age of 8. Most culling has occurred in pre-maturity ages, so it should be taken into consideration because it indicates that the ewes were eliminated before they reach the peak of production.
The conditional culling probability increases with age, while cumulative survival rate decreased with age of ewe. The hazard ratio of death increased with age up to 6 years of old steadily and then increased strongly, and reached two at 7 to 8 years of old. The high hazard ratio indicated an early death or short longevity. Normally, inverse of this ratio expresses useful information. The reversal of this ratio at a certain time interval, provided that the hazard level remains constant at this interval, will indicate the time it takes to occur (death). For example, at a time interval of 3 to 4 years, the ewe's longevity will be equal to a reversal of 0.5298, equivalent to two years. But, for 7 to 8 years old, the reciprocal of two will be 0.5 years that indicating if the dangers remain constant at this interval, the ewe's life will be only 6 months, and ewes remaining in this group will be lost after 6 months. Trend of survival and hazard ratio at different ages of ewes can be provided as a model to breeders of this breed. Heritability on the logarithmic scale, the original scale and effective heritability of the risk ratio obtained from the sire model with the Weibull function was predicted at low to high (0.002-0.145). Although heritability estimates for longevity are low, but genetic improvement may be increased by selecting animals with higher inbreeding values.
Conclusion: The results of this study showed that the most effective factor in shortening the longevity and decreasing survival in Kermani ewes is culling due to disease, especially in pre-maturity. Therefore, in order to improve the longevity, necessary studies and necessary preventive should be taken regarding the type and timing of the disease. Genetically, if possible, it would seek to create genetic resistance to diseases and environmental conditions. On the other hand, the results of models with the Weibull function indicate that in order to improve the survival rate and longevity, in addition to improving the non-genetic factors, the selection should be considered within the breed. Also, high heritability traits with high genetic correlation with longevity traits are identified and indirect selection be done based on them.
 

کلیدواژه‌ها [English]

  • Cause of culling
  • Economic life length
  • Kermani ewe
1. Abdelqader, A., A. Al Yacoub, and M. Gauly. 2012. Factors influencing productive longevity of Awassi and Najdi ewes in intensive production systems at arid regions. Small Ruminant Research, 104:37-44.
2. Abdulmohammadi, A., M. Moradi-shahrbabac, S. R. Miraee Ashtiani, and M. B. Sayyadnezhad. 2004. Estimation of Genetic parameters of longevity and its relationship with production traits in Holstein cows. Proceedings of the first Iranian congress of Animal Science, 2932-2935. (In Persian).
3. Bahri Binabaj, F. 2014. Genetic study of survival criteria at different ages and their relationship with reproductive traits in Karakul and Baluchi sheep. Ms.c thesis, Ferdowsi University of Mashhad, Iran.
4. Beygi, M., M. Vatankhah, and M. Faghani. 2014. Estimation of genetic, environmental and phenotypic trends for economic lifetime of the Lori-Bakhtiari ewes. Journal of Animal Science, 45:273-278. (In Persian).
5. Boettcher, P. J., L. K. Jairath, and J. C. M. Dekkers. 1999. Comparison of methods for genetic evaluation of sires for survival of their daughters in the first three lactations. Journal of Dairy Science, 82:1034-1044.
6. Borg, R. C. 2007. Phenotypic and genetic evaluation of fitness characteristics in sheep under a range environment. PhD Thesis, Blacksburg: Virginia Polytechnic Institute and State University.
7. Brash, L. D., N. M. Fogarty, and A. R. Gilmour. 1994. Reproductive performance and genetic parameters for Australian Dorset sheep. Australian Journal of Agricultural Research, 45:427-441.
8. Caraviello, D. Z., K. A. Weigel, and D. Gianola. 2004. Comparison between a Weibull proportional hazards model and a liner model for predicting the genetic merit of US Jersey sires for daughter longevity. Journal of Dairy Science, 87(10):3518-3525.
9. Conington, J. S., C. Bishop, A. Waterhouse, and G. Simm. 2004. A bioeconomic approach to derive economic values for pasture-based sheep genetic improvement programs. Journal of Animal Science Research, 82(5):1290-1304.
10. Dadar, M., F. Eftekharshahroudi, and SH. Moshref. 2007. Investigation of the factors affecting the birth weight, weaning and the pregnancy period of Golpayegani cattle. Proceedings of the second Iranian congress on Animal and Aquatic Sciences. 1674-1677. (In Persian).
11. Dastaniyan Khalejzadeh, S., M. Sayyadnejad. 2011. Genetic and phenotypic traits of longevity in Holestein cows in Iran. The first national conference modern topics in agriculture. (In Persian).
12. Ducrocq, V. R., L. Quaas, E. J. Pollak, and G. Casella. 1988. Length of productive life of dairy cows. 2. Variance component estimation and sire evaluation. Journal of Dairy Science, 71(11):3071–3079.
13. Getachew, T., S. Gizaw, M. Wurzinger., A. Haile., B. Rischkowsky., A. M. Okeyo., J. Slkner, and G. Meszaros. 2015. Survival analysis of genetic and non-genetic factors influencing ewe longevity and lamb survival of Ethiopian sheep breeds. Livestock Science, 176:22–32
14. Ghavi Hossein-Zadeh, N., R. Noori, and A. A. Shadparvar. 2018. Genetic analysis of longevity and lamb survival from birth to yearling in Moghani sheep. Journal of Applied Animal Research, 46:1363-1369. (In Persian).
15. Kaplan, E. L., and P. Meier. 1958. Nonparametric estimation from incomplete observations. Journal of the American statistical association, 53:457–481.
16. Khodabakhshzadeh, R., M. R. Mohammadabadi, A. Esmailizadeh Koshkoieh, H. Moradi-Shahrebabak, F. Bordbar, and S. Ansari Namin. 2016. Identification of point mutations in exon 2 of GDF9 gene in Kermani sheep. Polish Journal of Veterinary Sciences, 19(2):281–289.
17. Matos, C. A., C. Ritter, D. Gianola, and D. L. Thomas. 1993. Bayesian analysis of lamb survival using Monte Carlo numerical integration with importance sampling. Journal of Animal Science Research, 71(8):2047-2054.
18. Mekkawy, W. R., R. M. Roehe, M. Lewis, H. Davies, L. Bünger, G. Simm, and W. Haresign. 2009. Genetic relationship between longevity and objectively or subjectively assessed performance traits in sheep using linear censored models. Journal of Animal Science Research, 87(11):3482-3489.
19. Mohammadabadi, M. R. 2017. Role of clostridium perfringens in pathogenicity of some domestic animals. Journal of Advances in Agriculture, 7(3):1117-1121.
20. Mohammadabadi, M. R., and R. Sattayimokhtari. 2013. Estimation of (co)variance components of ewe productivity traits in kermani sheep. Slovak Journal of Animal Science, 46:45-51.
21. Mohammadabadi, M. R., E. Esfandyarpoor, and A. Mousapour. 2017. Using inter simple sequence repeat multi-loci markers for studying genetic diversity in Kermani Sheep. Journal of Research and Development, 5:154-157.
22. Mohammadinejad, F., M. Mohammadabadi, A. Barazandeh, M. Asadi Fozi. 2017. Estimating genetic parameters of kid survival in Raini Cashmere goat using linear and Weibul models. Iranian Journal of Animal Science, 48:297-304. (In Persian).
23. Nadaf Fahmideh, M., N. Ghavi Hossein-Zadeh, and M. Golshani. 2017. Study of genetic relationship between longevity and body weights in Guilan province native sheep. Animal Science Journal (Pajouhesh & Sazandegi). 30(115):93–102. (In Persian).
24. Ramezani, S., and N. Ghavi Hossein-Zadeh. 2017. Genetic and non-genetic factors affecting longevity of Mehraban sheep. Research Animal Production, 8(17):157–165. (In Persian).
25. Saghi, R., A. Aslami Nezhad, D. A. Saghi, and M. M. Shariati. 2016. Investigating factors affecting economic lifetime traits in Kurdi sheep. Iranian Journal of Animal Science Research, 7:478-485. (In Persian).
26. Schneider, M. del. P., E. Strandberg, V. Ducrocq, and A. Roth. 2005. Survival analysis applied to genetic evaluation for female fertility in dairy cattle. Journal of Dairy Science, 88:2253–2259.
27. Shairy, S. A., M. Tahmorespour, and M. M. Shariati. (2015). Estimation of genetic and environmental parameters of growth traits and percentage of deaths and livestock in Karakul lambs. Iranian Journal of Animal Science, 34(3-4),13-33. (In Persian).
28. Simmons, P., and C. Ekarius. 2009. Storey's guide to raising sheep: North Adams, MA: Storey Publishing LLC.
29. Therneau, T. M. and Lumley, T. 2017. Survival: Survival analysis. R package version 2.42.3 https://github.com/therneau/survival.
30. Vajed Ebrahimi, M. T., M. R. Mohammad Abadi, and A. Esmailizadeh Koshkoieh. 2016. Analysis of genetic diversity in five Iranian sheep population using microsatellites markers. Journal of Agricultural Biotechnology, 7:143-158.
31. Vatankhah, M. 2013. Estimation of the genetic parameters for survival rate in Lori-Bakhtiari lambs using linear and Weibull proportional hazard models. Journal of Agricultural Science and Technology, 15:1133-1143.
32. Vatankhah, M., and M. A. Talebi. 2014. The study of the causes of culling and survival distribution function in Lori-Bakhtiari ewes. Journal of Ruminant Research, 2:145-156. (In Persian).
33. Vukasinovic, N., J. Moll, and L. Casanova. 2001. Implementation of a routine genetic evaluation for longevity based on survival analysis techniques in dairy cattle populations in Switzerland. Journal of Dairy Science, 84:2073-2080.
34. Wang, T., Fernando, R. L. and Kachman, S. D. 2002. Matvec User’s Guide. Version 1.03. Available: http://statistics.unl.edu/faculty/steve/software/matvec/.
35. Yazdi, M. H., Visscher, P. M., Ducrocq, V. and Thompson, R. 2002. Heritability, reliability of genetic evaluations and response to selection in proportional hazard models. Journal of Dairy Science, 85:1563-1577.
36. Zamani, P., M. Akhondi, and M. R. Mohammadabadi. 2015. Associations of Inter-Simple Sequence Repeat loci with predicted breeding values of body weight in sheep. Small Ruminant Research, 132:123-127.
CAPTCHA Image