برآورد ارزش‌های اقتصادی صفات تولیدی و تولید مثلی گاوهای شیری کشت و صنعت مغان با استفاده از مدل زیست اقتصادی

نوع مقاله : علمی پژوهشی- ژنتیک و اصلاح دام و طیور

نویسندگان

1 گروه علوم دامی، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقـق اردبیلی، اردبیل، ایران.

2 محقق اردبیلی

3 دانشگاه محقق اردبیلی

چکیده

بهترین راه برای حداکثر کردن سود ‌آوری از طریق اصلاح نژاد، استفاده از ضرایب اقتصادی صفات به همراه ارزیابی ژنتیکی است. هدف از تحقیق حاضر برآورد ارزش اقتصادی برخی صفات تولیدی و تولید مثلی گاوهای شیری کشت و صنعت و دامپروری مغان بر مبنای داده‌های جمع‌آوری شده از 13000 رأس گاو شیری وشرایطبازاردرسال1393، با استفاده از یک مدل زیستی اقتصادی قطعی بود. صفات مورد بررسی شامل تولید شیر، تولید چربی شیر، سن نخستین زایش، فاصله گوساله‌زایی، افزایش وزن روزانه قبل و بعد از شیرگیری، وزن تولد، وزن زنده بالغ، نرخ بقاء قبل و بعد از شیر گیری بودند. مدل زیستی-اقتصادی بر اساس سیستم پرورشی و اطلاعات گله طراحی و ضرایب اقتصادی توسط نرم افزار MATLAB محاسبه گردید. ارزش اقتصادی هر صفت، به صورت مقدار تغییر در سود سالانه سیستم تولید، در اثر یک واحد افزایش در میانگین صفت مورد نظر در حالی‌که میانگین سایر صفات ثابت بمانند، برآورد شد. ابتدا تمامی هزینه‌ها و درآمدها، سود و ترکیب گله معین گردید و در فایل‌های ورودی برنامه ذخیره و نرم افزار اجرا شد. درآمدها و هزینه‌های سالانه براساس گروه‌های مختلف سنی محاسبه و سود سالانه به ازاء هر رأس گاو مولد 69/15966572 ریال حاصل شد. در بین منابع درآمدی، فروش شیر و اجزای آن 71 درصد، فروش گاو حذفی سالانه 10 درصد، فروش گوساله نر 11 درصد، فروش تلیسه‌ی مازاد 6 درصد و فروش کود 2 درصد را شامل شدند. در بین هزینه‌های متغیر 68 درصد را هزینه‌های تغذیه‌ای، 17 درصد را هزینه‌های نیروی کار و فروش دام و 10 درصد را هزینه‌های بهداشت و تولید مثل به خود اختصاص دادند. ارزش‌های اقتصادی صفات تولیدی و تولید مثلی شامل تولید شیر، تولید چربی شیر، سن نخستین زایش، فاصله گوساله‌زایی، افزایش وزن روزانه قبل و بعد از شیرگیری، وزن تولد، وزن زنده بالغ، نرخ بقا قبل و بعد از شیر گیری به ترتیب 59/4718، 8/144757، 52/30756-، 17/86789-، 45/1284، 57/34، 16/9894، 13/1900-، 5805، 9/107521ریال به ازاء یک رأس برآورد گردید. بالاترین اهمیت نسبی مربوط به صفات تولیدی (37/54 درصد) و بعد از آن به ترتیب تولید مثلی (98/21 درصد)، ماندگاری (56/20 درصد) و کمترین مقدار مربوط به رشد (07/3 درصد) برآورد گردید. افزایش یک واحد در میانگین صفات تولیدی و تولید مثلی اثرات متفاوتی بر درآمد، هزینه و سود آوری سامانه تولیدی دارند.

کلیدواژه‌ها


عنوان مقاله [English]

Estimation of Economic Value for Productive and Reproductive Traits of Moghan Agro-Industrial Holstein Cows by using Simulation and Bio-Economic Model

نویسندگان [English]

  • Reza Seyedsharifi 1
  • fatemeh nour afkan 2
  • Neamat Hedayat Eyorigh 3
  • Jamal Seifdavati 1
1 Animal Science Department of University of Mohaghegh Ardebili, Ardebil, Iran.
2 University of MohagheghArdabili
3 University of MohagheghArdabili
چکیده [English]

Introduction The best way to maximize the profitability through breeding is using economical coefficients of characteristics with genetic assessment. One of the effective ways to increase profitability in animal husbandry is using livestock breeding. It is not possible to utilize breeding optimized method without considering relative importance of characteristics economically. On the other hand, the best way to determine the relative importance of characteristics is to calculate the economic coefficients. Economic Value of characteristic is the profit obtained from one unit genetic improvement of the average of a characteristic when other characteristics are held in their constant values. Bio-economic model is a set of equations which define the incomes and costs of the production system as a function of different characteristics. Simulation is a process in which a set of examinations are carried out by using a designed method on the basis of a real system in order to find out the system behavior and various approaches are assessed for its operation in a defined range.
Materials and Methods The aim of the present study is to estimate the economic value of production and reproduction characteristics of dairy cows of Mohan cultivation, industry and animal husbandry based on collected data from 13000 dairy cows and market conditions in 2014 and by using a determined bio-economic model. The income factor included obtained incomes from milk sale, additional heifer sale, male calf, removed cows and fertilizer sale and the costs included nutrition, management and capital costs. The management costs included health and care, human forces and reproduction. Five different stages defined in animal life cycle. These stages including from birth to weaning, from weaning to the age calf sale (12th month), from weaning to the first insemination of female calf (18th month), from first insemination to first birth (alternative heifers) and productive cows more than two years old. The calculation of cost and revenue of the heifer per 18 months is carried out. The breeding period of calf, young cow and productive cow considered 12 months. In these herds, nutrition was done completely manually and in the place. Nutrition cost was calculated using energy requirements estimation equations AFRC (1991) by considering the consumed concentrate constant for productive cows, growing male and female calf and alternative heifers separately. In this system, artificial insemination is used for cows impregnate and reproduction cost considered as a function of interval of two births which indicates the number of insemination which resulted in impregnation. Health program included vaccination, deparasitation and quarantine. Male calf was sold based on each kilogram weight per each calf at a constant price. In present study, dairy cows in production system were categorized in seven different age groups of 2, 3, 4, 5, 6, 7, 8 and then revenues, costs, final profit and economic value of characteristics calculated for every age group separately. The studied characteristics include milk production, fat milk production, age of the first birth, calf birth interval, increasing daily weight before and after weaning, birth weight, matured calf weight and live rate before and after weaning. The bio-economic model designed based on breeding and information system of herd and economic coefficients calculated by matlab software. Economic value of each characteristic estimated based on the changes in annual profit of production system per one unit increase in the average of the considered characteristic while other characteristics are kept constant. First, all of the revenues and costs and profit and herd combination determined and the input files saved and the program ran.

Results and Discussion Annual revenues and costs calculated based on different age groups and the annual profit was 15966572/69 Rials for each productive cow. Among revenue resources, 71% was for milk sale and its components, 10% for removed cow sale, 11% for male calf sale, 6% for additional heifer sale and 2% for fertilizer sale. Among variable costs 68% was for nutrition costs, 17% for work force cost and livestock sale and 10% for health and reproduction costs. Economic values of production and reproduction characteristics including milk production, milk fat production, age of first birth, calf birth interval, daily weight increase after and before weaning, birth weight, matured calf weight and live rate before and after weaning estimated 4718/59, 144757/8, -30756/52, -86789/17, 1284/45, 34/57, 9894/16, -1900/13, 5808 and 107521/9 Rials per each cow respectively. The highest relative importance related to production characteristics (54/37%) and after that reproduction (21.98%), durability (20/56%) and the least amount estimated for growth (3/07%). Characteristics can be divided into several groups based on the impact on revenues and costs. Economic values of production and reproduction characteristics including milk production, milk fat production, age of first birth, calf birth interval, daily weight increase after and before weaning, birth weight, matured calf weight and live rate before and after weaning estimated 4718/59, 144757/8, -30756/52, -86789/17, 1284/45, 34/57, 9894/16, -1900/13, 5808 and 107521/9 Rials per each cow respectively. The highest relative importance related to production characteristics (54/37%) and after that reproduction (21.98%), durability (20/56%) and the least amount estimated for growth (3/07%). Characteristics can be divided into several groups based on the impact on revenues and costs. A group of characteristics increase the revenue and cost of production system and also increase the profit compared with the initial state (initial value). Most of the production characteristics such as milk production, fat, increase of weight before and after weaning, birth weight and live rate before and after weaning are placed in these groups. However, by increasing one unit of matured cow weight, the revenue and costs are increased and but the obtained profit is decreased. Characteristics of the second group do not impact the revenue but the costs of production system increased by increasing its average which include the age of the first birth. The third group includes the characteristic of interval between two births and the revenue decreased, system costs increased and profit decreased by increasing its average.
Conclusion Increase in the average unit production and reproduction traits have different effects on revenue, cost and profitability of production systems.

کلیدواژه‌ها [English]

  • Bio-economic model
  • Economic value
  • Functional traits
  • Holstein dairy cattle
  • Production traits
1- Ahmadi-Mottaghi, A. 2002. Estimation of economic values for some of production traits in Baluchi sheep. MSc Thesis. Sari Agricultural Sciences and Natural Resources University, Iran. (In Persian).
2- Albera, A.,‌ P. Carnier, and A. F. ‌Groen. 2004. Definition of a breeding goal for the Piemontese breed:‌ economic‌ and biological values and their sensitivity to production circumstances. Livestock Production Science, 89: 66–77.
3- Athari-mortazavi, B., A. A. Shadparvar., S. Mirmahdavi-Chabok, and M. Mahdizadeh. 2010. Estimation of economic coefficients of some traits of native cattle of Guilan province in breeding system between. Page 292 in Proc. 4th Iranian Congress of Animal Sciences, University of Tehran, Iran. (In Persian).
4- Cardoso, V. L., J. R. Nogueir, ‌and J. A. M. Van Arendonk. 1999. Optimum replacement and insemination policies for Holstein cattle in the southeastern region of Brazil: the effect of selling animals for production. Journal of Dairy Science, 82: 1449-1458.
5- Cartwright, T. C. 2003. The use of system analysis in animal science with emphasis on animal breeding. Journal of Animal Science, 49: 120-125.
6- Dekkers, J. C. M., J. H. Ten Hag, and A. Weersink. 1998. Economic aspects of persistency of lactation in dairy cattle. Livestock Production Science, 53: 237-252.
7- Goddard, M. E. 1998. Consensus and debate in the definition of breeding objectives. Journal of Dairy Science, 81: 6-18.
8- Groen, A. F., T. Steine., J. Colleau., J. Pedersen., J. Pribyl, and N. Reinsch. 1997. Economic values in dairy cattle breeding, with special reference to functional traits. Report of an EAAP-working group. Livestock Production Science, 49: 1-21.
9- Harris, D. L. 1970. Breeding for efficiency in livestock product: defining the economic objectives. Journal of Animal Science, 30: 860-865.
10- Hirooka, H., A. F. Groen, and J. Hillers. 1998. Developing breeding objectives for beef cattle production. 1. Abio-economic simulation model. Journal of Animal Science, 66: 607-621.
11- Kahi, A. K, and G, Nitter .2004. Developing breeding schemes for pasture based dairy production systems in Kenya, I. Derivation of economic values using profit functions. Livestock Production Science, 88:161-177.
12- Komlosi, M., M. Wolfova., J. Wolf., B. Farkas., Z. Szendrei, and B. Beri. 2008. Economic weights of production and functional traits for Holstein- Friesian cattle in Hungary. Journal of Animal Breeding and Genetics, 157: 143-153.
13- Korver, S., J. A. M. VanArendonk, and W. J. Koops. 1985. A function for live weight change between two calving in dairy cattle. Animal Production, 40: 223-241.
14- Mirmahdavi-Chabok, S., A. A. Shadparvar., M. Eskandarnasab, and A. Gorbani. 2007. Estimation of economic coefficients of milk production, fat and protein percentages and herd life expectancy in the maximum profit trend using the equation of profit. Agricultural Knowledge, 17: 155-165. (In Persian).
15- Phocas, F., C. Bloch., P. Chapelle., F. Becherel., G. Renand, and F. Menissier. 1998. Developing a breeding objective for a French purebred beef cattle selection programme. Livestock Production Science, 57: 49–65.
16- Plat-Church, A. 2002. Determining Optimal Age at First Calving. Communications Manager. Cooperative Resources International, National Animal Health Monitoring System.
17- Rafiee, F., M. Mottaghitalab., A. A. Shadparvar, and H. Saberi-Najafi. 2006. Investigating the effects of production system factors on the economic efficiency of Holstein milk herds using a simulation model. Iranian Journal of Agricultural Science, 37(5):888-875. (In Persian).
18- Rogers, P. L., C. T. Gaskins., K. A. Johnson, and M. D. MacNeil. 2004. Evaluating longevity of composite beef females using survival analysis techniques. Journal of Animal Science, 82: 860-866.
19- Sadeghi-Sefidmazgi, A. 2011. Estimation of economic importance of traits in Iranian Holstein dairy cows. PhD Thesis. University of Tehran, Iran. (In Persian).
20- Sahragard-Ahmadi, S. 2010. Estimation of economic coefficients of milk production and fat life and livestock of cattle and Holstein cattle in Lorestan province. MSc Thesis. University of Guilan, Iran. (In Persian).
21- Shadparvar, A. A. 1997. Determine the most suitable breeding goal for Holstein cattle in Iran. PhD Thesis. Tarbiat Modares University, Tehran. (In Persian).
22- Singh, R. P, and B. Singh. 1995. Economic efficiency of milk production system under rural conditions. Indian Journal of Animal Research, 29: 27-32.
23- Smith, C., J. James, and E. W. Brascamp. 1986. On the derivation of economic weights in Livestock improvement. Animal Production, 43: 545-551.
24- Van-Arendonk, J. A. M. 1985. Studies on the replacement policies in dairy cattle. II. Optimum policy and influence of changes in production and prices. Livestock Production Science, 13:101–121.
25- Van-Arendonk, J. A. M. 1991. Use of profit equations to determine relative economic value of dairy cattle herd life and production from field data. Journal of Dairy Science, 74: 1101– 1107.
26- Vatankhah, M, and M. Faraji-Nafchi. 2013. Cost-benefit analysis and economical and biological efficiencies of Holstein cows differing in level of milk production. Iranian Journal of Animal Production Research, 3: 9-1. (In Persian).
27- Wolfova, M., J. Wolf., J. Pribyl., R. Zahradkova, and J. Kica. 2005. Breeding objectives for beef cattle used in different production systems. 1. Model development. Livestock Production Science, 95: 201-215.
CAPTCHA Image