مقایسه تجزیه پذیری، هضم و تخمیر میکروبی برگ برهان یا درخت ابریشم به جای یونجه در گاو و گاومیش خوزستان

نوع مقاله : علمی پژوهشی - تغذیه نشخوارکنندگان

نویسندگان

دانشگاه کشاورزی و منابع طبیعی رامین خوزستان

چکیده

این آزمایش به منظور بررسی جایگزینی 0، 50 و100 درصد برگ برهان یا درخت ابریشم به جای یونجه بر فراسنجه‌های تجزیه‌پذیری، تخمیری و قابلیت هضم آزمایشگاهی در گاو و گاومیش خوزستان انجام شد. قابلیت هضم ماده خشک جیره حاوی 50 درصد برگ در گاومیش، 70/85 درصد و در گاو، 94/82 درصد بود. صرف نظر از نوع تیمار قابلیت هضم ماده خشک و NDF بین گاو و گاومیش متفاوت نبود. صرف نظر از نوع دام، پتانسیل تولید گاز در جیره‏های حاوی 0، 50 و 100 درصد برگ به ‏ترتیب 059/175، 44/108 و 140/103 میلی‏لیتر بود. اثر جیره‌های حاوی برگ بر pf، توده میکروبی، راندمان سنتز توده میکروبی و ماده آلی واقعا هضم شده معنی‌دار نبود. راندمان سنتز توده میکروبی درگاومیش (7281/0 درصد) بالاتر از گاو (6308/0 درصد) بود. بخش کند تجزیه (b)، ثابت نرخ تجزیه (c)، پتانسیل تجزیه‌پذیری (PD) و تجزیه‌پذیری مؤثر (ED) ماده خشک به طور معنی‌داری در سطح 50 درصد برگ بالاترین مقدار را دارا بود. بخش سریع ‏تجزیه (a) و تجزیه‌پذیری مؤثر (ED) پروتئین در سطح 50 و 100 درصد برگ بالاترین مقادیر را نسبت به جیره شاهد نشان داد. با توجه به نتایج بالا می‌توان نتیجه گرفت برگ برهان یا درخت ابریشم به دلیل بهبود شرایط تخمیری در شکمبه می‌تواند به جای یونجه در جیره گاو و گاومیش در شرایط آزمایشگاه استفاده شود.

کلیدواژه‌ها


عنوان مقاله [English]

The Comparison of Degradability, Digestion and Microbial Fermentation of Siris Leaves or Silk Tree Instead of the Alfalfa in Cow and Buffalo of Khuzestan

نویسندگان [English]

  • laleh khoramzadeh
  • Tahereh Mohammadabadi
  • Morteza Mamoei
  • Morteza chaji
  • Mohsen Sari
Ramin Agriculture and Natural Resources University of Khuzestan
چکیده [English]

Introduction Siris is a tropical legume. It has common names such as silk tree. Compositional studies indicated carbohydrates as major components and potassium was found in the highest amount and copper in the lowest. Siris leaf has high content of N (16 to 23 percent crude protein) and Ca, a low content of tannins and phenolic compounds. Levels of total tannins in the leaf of siris is 4%. The amino acids profile indicated that arginine and lysine are present in large amounts in seeds while glutamic acid and aspartic acid are higher in pods. Siris is an economically important plant for industrial and medicinal uses. This experiment was conducted to investigate the different levels (0, 50 and 100 %) of siris leave or silk tree instead of alfalfa on degradability parameters, fermentative and in vitro digestibility in cows and buffalo Khouzestan.
Materials and methods The leave of siris were collected from shushtar and milled. Levels of 0, 50 and 100% leave replaced alfalfa in the diet. Rumen fluid was collected from fistulated cow and buffalo before the morning feeding. About 500 ± 10 mg experimental samples (1.0 mm screen) incubated with 35 ml buffered rumen fluid under continuous CO2 reflux in 100 ml vials for 2, 4, 6, 8, 10, 12, 16, 24, 48, 72 and 96 h, in a water bath maintained at 39°C. Cumulative gas production data were fitted to the exponential equation Y=B (1−e−Ct). Partitioning factor, microbial biomass, actually degradable organic matter was calculated. Digestibility of dry matter and NDF of the samples were determined using an in vitro procedure. Dry matter and crude protein degradability were measured by in situ technique using fistulated animals (fed 60% forage+40% concentrate). Samples put in the polyester bags and incubated in the rumen for 2, 4, 6, 8, 16, 24, 48, 72 and 96 hours. After the specific incubation periods, the bags immediately were hand-rinsed under cold tap water until clear, and dried in a forced-air oven (60 °C, 48 hour). Disappearance of DM and CP of samples from bags with incubation time were calculated using the equation of, P = a + b (1- e -ct), P= fraction degraded in the time t, a= soluble fraction, b= potentially degradable fraction, c= degradation rate and t= incubation time. The effective degradability was calculated using the equation of ED = a + (bc/(c+k). Data were subjected to analysis as a split plot design using the General Linear Model (GLM) procedure of SAS.
Results and Discussion Dry matter digestibility of the diet containing 50% siris leave in Buffalo was 85.70 % and in cows, 82/94 %. Regardless of the type of treatment digestibility of dry matter and NDF was not significant between cow and buffalo. Regardless of the type of animal, the potential of gas production in the diets containing 0, 50 and 100 % siris leave was 175.05, 108.44 and 103.14 ml, respectively. The effect of diets containing leave on pf, microbial biomass, microbial biomass efficiency and organic matter digested was not significant. The efficiency of the microbial biomass in Buffalo (0.7281%) was higher than the cow (0.6308%). Slowly degradable fraction (b), constant degradable rate (c), potential of degradability (PD) and effective degradability (ED) of dry matter at 50 % leaf was the highest. Fraction a rapidly degradable (a) and effective degradability (ED) protein at 50 and 100 % the leave was the highest amount in compared to the control diet. In agreement with results, the researchers reported tropical legumes because of high quantity of protein and carbohydrate and lower fiber can be used as a suitable substrate for rumen microbial growth. Also legumes ability to provide required nitrogen, energy and vitamins for microorganisms. But presence of anti-nutritional factors such as tannin, saponin and oxalate in siris might be reduce fibrolytic enzyme activity and consequently fiber digestibility and fermentation.
Conclusion: According to the results it ccan be concluded siris leaves or silk tree improved fermentation condition in the rumen, therefore can be used instead of alfalfa in the diet of cow and buffalo in vitro.

کلیدواژه‌ها [English]

  • Buffalo
  • Cow
  • digestibility
  • Fermentation
  • Siris leave or Silk tree
1- Bahatia, S. K., S. Kumar, and D. C. Sangwan. 2004. Advances in buffalo-cattle nutrition and rumen ecosystem. International Book Distributing Co. Publishing Division (IBDC) Publisher.
2- Balgees, A., A. M. A. Attaelmnan., A. G. Fadalelseed, and E. O. Amasiab. 2009. Effects of Albizia Lebbeck or Wheat Bran Supplementation on Intake, Digestibility and Rumen Fermentation of Ammoniated Bagasse. Journal of Applied Scienes Research, 5(8): 1002-1006.
3- Balgees, A., A. M. A. Attaelmnan., A. G. Fadalelseed, and E. O. Amasiab. 2013. In-situ degradability and in vitro gas production of selected multipurpose tree leaves and alfalfa as ruminant feeds. World's Veterinary Journal, 3(2): 46-50.
4- Blummel, M. and E. R. Ørskov. 1993. Comparison of in vitro gas production and nylon bag degradability of roughages in predicting feed intake in cattle. Animal Feed Science and Technology, 40: 109-119.
5- Broderick, G. A. and J. H. Kang. 1980. Automated simultaneous determination of ammonia and total amino acids in ruminal fluid and in vitro media. Journal of Dairy Science, 63: 64-75
6- Bueno, I. C., S. L. Cabral Filho., S. P. Gobbo., H. Louvandini., D. M. Vitti, and A. L. Abdalla. 2005. Influence of inoculum source in a gas production method. Animal Feed Science and Technology, 123: 95-105. ‏
7- Danesh Mesgaran, M. 2009. New methods inter-animal (in vitro) of animal science researches. Mashhad Ferdowsi University Press, 191. (In Persian).
8- Dwatmadji Teleni, E., Ar. Bird, and Jb. Lowry, 1992. Nutritive value of Albizia lebbeck supplements for growing sheep. Australian Journal of Experimental Agriculture, 2(3): 273-278.
9- Galindo, J., I. Scull., Y. Marrero., A. Sosa., A. I. Aldana., O. Moreira., D. Delgado., G. Febles., V. Torres., O. La, and A. Noda. 2012. Effect of Samanea saman (Jacq.) Merr. Albizia lebbeck Benth and Tithonia diversifolia (Hemsl.) Gray (plant material 23) on the methanogen population and on the ruminal microbial ecology. Cuban Journal of Agricultural Science, 46(3): 273-278.
10- Getachew, G., M. Blummel., H. P. S. Makkar, and K. Becker. 2001. In vitro gas production measuring techniques for assessment of nutritional quality of feeds: a review. Animal Feed Science and Technology, 72(3): 261-281.
11- Griffiths, R. A. 1986. Feeding niche overlap and food selection in smooth and palmate newts, T. vulgaris and T. helveticus at a pond in mid-Wales. Journal of Animal Ecology, 55: 201-214.
12- Gupta, S. K. and P. K. Sharma. 2005. Review on phytochemical and pharmacological aspects of Dolichos biflorus Linn. Asian Journal of Chemistry, 17: 37-39.
13- Hassan Sallam, S. M. A., I. C. Da Silva Bueno., P. B. Dde Godoy., F. N. Eduardo., D. M. S. Schmidt Vittib, and A. L. Abdalla. 2010. Ruminal fermentation and tannins bioactivity of some browses using a semi-automated gas production technique. Tropical and Subtropical Agroecosystems, 12: 1 –10.
14- Hawary, S., K. El. El Fouly., N. M. Sokkar, and Z. Talaat. 2011. A phytochemical profile of Albizia lebbeck (L.) benth, cultivated in Egypt. Asian Journal of Biochemistry, 6: 122-141.
15- Imai, S. 1998. Phylogenetic taxonomy of rumen ciliate protozoa based on their morphology and distribution. Applied of Animal Research, 13: 17-36.
16- Kennedy, P. M., C. S. McSweeney., D. Foulkes., A. John., A. C. Schlink., R. P. LeFeuvre, and J. D. Kerr. 1992. Intake and digestion in swamp buffaloes and cattle. 1. The digestion of rice straw (Oryza sativa). Journal of Agricultural Science, 119: 227-242.
17- Kumar, A., A. K. Saluja., U. D. Shah, and A. V. Mayavanshi. 2007. Pharmacological potentioal of Albizzia lebbeck: a Review. Pharmacognosy Reviews, 1(1):171-174.
18- Kung, L. and R. Shaver. 2001. Interpretation and use of silage fermentation analysis reports. Department Animal Food Science, 301: 790-1980.
19- Larbi, A., J. W. Smith., I. O. Kurdi., I. O. Adekunle., A. M. Raji, and D. O. Ladipo. 1996. Feed value of multipurpose fodder trees and shrubs in West Africa: edible forage production and nutritive value of Millettia thonningii and Albizia lebbeck. Agroforestry Systems, 33(1): 41-50.
20- Mehrez, A. Z. and E. R. Orskov. 1977. A study of the artificial fibre bag technique for determining the digestibility of feeds in the rumen. Journal of Agricultural Science, 88: 645-650.
21- Menke, K. H. and H. Steingass. 1988. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Animal Research Development, 28:7-55.
22- Michael, H., L. Tavendale., P. Meagher., D. Pacheco., N. Walker., G. T. Attwood, and S. Sivakumaran. 2005. Methane production from in vitro rumen incubations with Lotus pedunculatus and Medicago sativa, and effects of extractable condensed tannin fractions on methanogenesis. Animal Feed Science and Technology, 123: 403-419.
23- Zia-Ul-Haq, M., S. Ahmad., M. Qayum, and S. Ercişli. 2013. Compositional studies and antioxidant potential of Albizia lebbeck (L.) Benth, pods and seeds. Turkish Journal of Biology, 37: 25-32.
24- Ndemanisho, E. E., B. N. Kimoro, E. J. Mtengeti, and V. R. M. Muhikambele. 2006. The potential of Albizia lebbeck as a supplementary feed for goats in Tanzania. Agroforestry Systems, 67:85–91.
25- NRC. 2001. Nutrient Requirements of Dairy Cattle. 7th rev. Ed. The National Academies Press, Washington, DC.
26- Orskov, E. R. and P. McDonald. 1979. The estimation of protein degradability in the rumen from incubation measurements weighed according to rate of passage. Journal of Agricultural Science, 92: 499-503.
27- Paul, S. S. and D. Lal. 2010. Nutrient Requirements of Buffaloes. Satish Serial Publishing House. pp. 5-17.
28- Puppo, S., S. Bartocci., S. Terramoccia., F. Grandoni, and A. Amici. 2002. Rumen microbial counts and in vivo digestibility in buffaloes and cattle given different diets. British Society of Animal Science, 75: 323-329.
29- Sandoval Castro, C. A., H. Magaña Sevilla., C. Capetillo Leal, and F. D. D. Hovell. 2000. Comparison of charcoal and polyethylene glycol (PEG) for neutralizing tannin activity with an in vitro gas production technique. Faculty of Veterinary Medicine and Animal Science. Autonomous University of Yucatan, Mexico.
30- Shakaramy, F. 2011. The comparison of digestibility processed sugar cane pith and wheat straw by the microorganisms and fungi of Holstein cow and buffalo of Khuzestan. MSc Thesis. Ramin Agricultural and Natural Resources University, Iran. (In Persian).
31- Sharifi, M and A. A. Khadem. 2012. Ruminants and Ruminal dynamic. Publications knowledge Negar. Tehran. p 463. (In Persian).
32- Silanikove, N., S. Landau., D. Or. D. Kababya., I. Bruckental. and Z. Nitsan. 2006. Analytical approach and effects of condensed tannins in carob pods (Ceratonia siliqua) on feed intake, digestive and metabolic responses of kids. Livestock Science, 99: 29-38.
33- Sliwinski, B. J., C. R. Soliva., A. Machmüller, and M. Kreuzer. 2002. Efficacy ofplant extracts rich in secondary constituents to modify rumen fermentation. Animal Feed Science Technology, 101: 101–114.
34- Soltan, Y. A., A. S. Morsy., S. M. A. Sallam, and H. Louvandini, 2012. Comparative in vitro evaluation of forage legumes (prosopis, acacia, atriplex and leucaena) on ruminal fermentation and methanogenesis. Journal of Animal and Feed Sciences, 21: 759-772.‏
35- Sommart, K., D. S. Parker., P. Rowlinson, and M. Wanapat. 2000. Fermentation characteristics and microbial protein synthesis in an in vitro system using cassava, rice straw and dried ruzi grass as substrates. Asian-Australian Journal of Animal Science, 13: 1084-1093.
36- Theodorou, M. K., B. A. Williams., M. S. Dhanoa., A. B. McAllan, and J. France. 1994. A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Animal Feed Science and Technology, 74, 3583–3597.
37- Tilley, J. M. A. and R. A. Terry. 1963. A two stage technique for the indigestion of forage crops. Journal of the British Grassland Society, 18: 104-111.
38- Van Soest, P. J. 1994. Nutritional Ecology of the Ruminant, 2nd ed. Cornell University Press, United States.
39- Yousefi, Z. 2013. The study of nutritive value of siris (Albizia lebbeck) in Arabi sheep. MSc. Thesis. Ramin Agricultural and Natural Resources University. (In Persian).