تعیین ترکیب شیمیایی، فراسنجه‌های تولید گاز و قابلیت هضم برگ چند گونه درختی (با و بدون افزودن پلی‌اتیلن‌گلایکول) مورد استفاده در تغذیه دام

نوع مقاله : علمی پژوهشی - تغذیه نشخوارکنندگان

نویسندگان

1 گروه علوم دامی، دانشکده کشاورزی و منابع طبیعی، دانشگاه گنبد کاووس، گنبد کاووس، ایران

2 گروه علوم دامی،دانشکده کشاورزی و منابع طبیعی،دانشگاه گنبدکاووس، گنبد کاووس، ایران

3 گروه زیست‌شناسی، دانشکده علوم پایه و مهندسی، دانشگاه گنبد کاووس، گنبد کاووس، ایران

چکیده

مطالعه­ای به­منظور تعیین ترکیب شیمیایی، فراسنجه­های تولید گاز و مولفه­های قابلیت هضمی برگ چند گونه درختی مورد استفاده در تغذیه دام در قالب طرح کاملا تصادفی (7 تیمار و 3 تکرار) انجام شد. در این مطالعه از ترکیب پلی اتیلن گلایکول به صورت افزودنی در سطح توصیه شده (دو برابر وزن نمونه­های آزمایشی) استفاده شد. ترکیب شیمیایی نمونه­ها با استفاده از روش­های استاندارد تعیین شد. به­منظور برآورد فراسنجه­های تولید گاز، از روش آزمون گاز استفاده شد. قابلیت هضم برون­تنی نمونه­ها با استفاده از روش کشت بسته تعیین شد. نتایج نشان داد که مقادیر ماده خشک، ماده آلی، غلظت الیاف نامحلول در شوینده خنثی و اسیدی، همی­سلولز و میزان خاکستر در بین تیمارها اختلاف معنی­داری داشت. بیشترین مقدار خاکستر در تیمار افرا (27/1 درصد) و کمترین مقدار در تیمارهای بلوط، ممرز و چلم (به­ترتیب 52/0، 56/0 و 58/0 درصد ماده خشک) مشاهده شد. مقدار پروتئین خام گونه­های مختلف درختی در دامنه 7 تا 18 درصد قرار داشت. بیشترین مقدار تانن در درخت راش (063/0 گرم در کیلوگرم ماده خشک) و کمترین مقدار در برگ درخت بلوط (018/0 گرم در کیلوگرم ماده خشک) مشاهده گردید. نتایج نشان داد که در بین تیمار­های آزمایشی از نظر قابلیت هضم ماده آلی، انرژی قابل متابولیسم و اسید­های چرب کوتاه زنجیر اختلاف معنی­داری وجود داشت. بیشترین پتانسیل و نرخ تولید گاز در برگ درخت چلم بدون افزودن پلی­اتیلن گلایکول مشاهده شد (به­ترتیب 9/214 میلی­لیتر و 34/4 میلی­لیتر در ساعت). افزودن پلی­اتیلن گلایکول باعث افزایش میزان تولید گاز، کاهش عامل تفکیک، تولید پروتئین میکروبی و افزایش بازده تولید گاز در گونه­های مورد مطالعه شد. به طور کلی، نتایج این مطالعه نشان داد که برگ برخی از درختان (آزاد، چلم، نمدار، راش، افرا، بلوط و ممرز) می­تواند به عنوان مکمل پروتئینی در خوراک­های بر پایه علوفه کم کیفیت برای زمان خشک­سالی و کمبود علوفه در جیره نشخوارکنندگان استفاده شود.

کلیدواژه‌ها


عنوان مقاله [English]

Determination of chemical composition, gas production parameters and digestibility of leaves from several tree species (with and without polyethylene glycol) used in livestock feeding

نویسندگان [English]

  • Ruhollah Shahraki 1
  • javad bayatkouhsar 1
  • Farzad Ghanbari 2
  • Abolfazl Daneshvar 3
1 Department of Animal Science, Faculty of Agriculture and Natural Resources, Gonbad Kavos University, Gonbad Kavos, Iran
2 Department of Animal Science, Faculty of Agriculture, Gonbad Kavos University, Gonbad Kavos, Iran
3 Department of Biology, Faculty of Basic Science, Gonbad Kavous University, Gonbad Kavous, Iran
چکیده [English]

Introduction[1]Lack of nutritional resources, especially in harsh conditions, is one of the major problems in the livestock and poultry industry. North of Iran due to its rich natural resources of native tree species and shrubs (50 tree and 80 shrubs) and annually significant amount of afforestation in cities, public places and natural areas, if they managed for animal feeding, can be an appropriate option for preparing a ration to feed the animals. Despite this capability, there is little information on the nutritional value of many tree and shrub species in the northern of the country. By targeting this approach in the researches, it is possible to manage natural resources and direct forestry to specific species. In this case, an effective step will be taken to manage the country's multifunctional forestry and it is also possible to diversify the countries livestock nutrition. The aim of this study was to determine the chemical composition, gas production parameters and detestability characteristics of leaves from several tree species used in livestock feeding in a Completely Randomized Design (7 treatments and 3 replicates).
 
Materials and Methods Samples of commonly available seven species of forest tree leaves (Siberian Elm, Lexandrian Laurel,Linden, Beech, Maple Tree, Caucasian oakand Hornbean) were collected from different locations of Shast-Klateh Forest of Golestan province, Gorgan. Gorgan is located in 36o 45´ N, 54o 21´ E. The mean annual rainfall is 649 mm. Samples were taken and air dried at 60 °C for 48 h and milled to pass a 1 and 1.5 mm screen. In this study, effects of adding polyethylene powder glycol (twice the weight of the sample, Merck, MW­=­6000) was evaluated. Their nutritional value was evaluated through determination of chemical compositions and in vitro gas production techniques. Samples were tested in an in vitro gas production method (96 h incubation) and batch rumen culture system (24 h incubation). Rumen fluid was collected before the morning feed from three fistulated Dalagh male sheep (43 ± 1.5 kg live weight fed on a forage diet at a concentration of 40:60). In vitro gas production was measured in triplicate and for each replicate, a sample of 200 mg DM were used. The bottles were then filled with 30 ml of incubation medium that consisted of 10 ml of rumen fluid plus 20 ml of buffer solution and placed in a water bath at 39 °C. Gas production was recorded at 2, 4, 8, 16, 24, 48, 72 and 96 h. Total gas values corrected for blank incubation and gas values expressed in ml g-1 of DM. The asymptotic gas production system (A) and rate of gas production (c), organic matter digestibility (OMD), metabolizable energy (ME) and short chain fatty acids (SCFA). A medium similar to one developed for gas production was used for batch rumen culture system to measure pH, and NH3-N and in vitro digestibility. The pH of the media was measured after 24 h incubation. After 24 h incubation, the contents of each glass bottle were empty, strained through four layers of cheesecloth and then 10 ml of strained rumen fluid was acidified by 10 ml of 0.2 N HCl for determination of NH3-N using the distillation method. Finally, all contents remaining in the bottles were filtered through nylon bags, oven dried at 60 °C for 48 h and analyzed for IVDMD and IVOMD.
 
Results and Discussion The results showed that the chemical composition of leaves of trees varied significantly among species. Maple tree had highest (1‏‏‏‏‏.27%) and Caucasian oak, Hornbean and Lexandrian Laurel had lowest (0‏‏‏‏‏.52, 0‏‏‏‏‏.56 and 0‏‏‏‏‏.58 respectively) of crude Ash content. The crude protein content of the tree leaves ranged from 7 to 18%. The highest and lowest tannin content were related to Beach tree (0‏‏‏‏‏.063 g‏‏‏‏‏/kg DM) and Caucasian oak (0‏‏‏‏‏.018 g‏‏‏‏‏/kg DM) respectively. There were significantly differences among several leaves of trees species on OMD, ME and SCFA. Addition of Poly Ethylene Glycol (PEG) increased potential gas production compared without PEG. The highest gas production and rate of gas production was related to Lexandrian Laurel tree without PEG (214‏‏‏‏‏/9 ml and 4‏‏‏‏‏.34 ml‏‏‏‏‏/h respectively). Portioning factor, Microbial crude protein and Gas yield decreased when used PEG.
 
Conclusion Generally, obtained results showed that some of the leaves of trees can be fed as supplements to low protein forage, and can alleviate feed shortage for ruminants in dry season.

کلیدواژه‌ها [English]

  • Chemical composition
  • Disability
  • Gas production
  • Leaves of trees
  • Polyethylene Glycol (PEG)
1-       Abdulrazak, S. A., T. Fujihara, T. Ondiek, and E. R. Orskov. 2000. Nutritive evaluation of some Acacia from Kenya. Animal Feed Science and Technology, 85: 89-98.
2-       Aghamohamadi, N., F. Hozhabri, A. Dariush, and S. Y. Mousavi. 2012. The influence of oak acorn (Quercus persica) on in vivo nutrient digestibility and rumen fermentation parameters in sanjabi sheep. 5th Iranian Animal Sciences congress. University of Isfahan. (In Persian).
3-       Ali-Ehyaii, M., and A. Behbahani Zadeh. 2014. Description of Soil Chemical Analysis Methods. Soil and Water Research Institute. Number 892. (In Persian).
4-       Angaji, L., M. Souri, and M. Moeini. 2011. Deactivation of tannins in raisin stalk by polyethylene glycol-600: Effect on degradation and gas production in vitro. African Journal of Biotechnology, 10 (21), 4478-4483.
5-       AOAC (Association of Official Analytical Chemists). 2005. Official Methods of Analysis. Association of Official Analytical Chemists. Washington, DC. USA.
6-       Arhab, R., D. Macheboeuf, M. Aggoun, H. Bousseboua, D. Viala, and J. M. Besle. 2009. Effect of polyethylene glycol on in vitro gas production and digestibility of tannin containing feedstuffs from North African arid zone. Tropical and Subtropical Agroecosystem, 10: 475-486.
7-       Arzani, H. 2010. Forage quality.1th. Tehran university publisher, pp 329.
8-       Bagheripour, E., Y. Rouzbehan, and D. Alipour. 2008. Effects of ensiling, air-drying and addition of polyethylene glycol on in vitro gas production of pistachio by-products. Animal Feed Science and Technology, 146: 327–336. (In Persian).
9-      Ben Salem, H., I. Ben Salem, and M. S. Ben Saïd. 2005. Effect of the level and frequency of PEG supply on intake, digestion, biochemical and clinical parameters by goats given Kermes oak (Quercus coccifera L.)-based diets. Small Ruminant Research, 56:127-137.
10-   Besharati, M., and Taghizadeh, A. 2012. Effect of using different level of polyethylene glycol on in vitro gas production of pomegranate pomace. 5th Iranian Animal Sciences congress. University of Isfahan. (In Persian).
11-   Bhatta, R., S. Vaithiyanathan, N. P. Singh, A. K. Shinde, and D. L. Verma. 2005. Effect of feeding tree leaves as supplements on the nutrient digestion and rumen fermentation pattern in sheep grazing semi-arid range of India. Small Ruminant Research, 60: 273–280.
12-  Broderick, G. A., and J. H. Kang. 1980. Automated simultaneous determination of ammonia and total amino acids in ruminal fluid and in vitro media. Journal of Animal Science, 63: 64-75.
13-   Bueno, I. C., S. L. Cabral Filho, S. P. Gobbo, H. Louvandini, D. M. Vitti, and A. L. Abdalla. 2005. Influence of inoculum source in a gas production method. Animal Feed Science and Technology, 123: 95-105.
14-   Doce, R. R., G. Hervás, A. Belenguer, P. G. Toral, F. J. Giráldez, and P. Frutos. 2009. Effect of the administration of young oak (Quercus pyrenaica) leaves to cattle on ruminal fermentation. Animal Feed Science and Technology, 150: 75-85.
15-   Farzane, A. and R.  Bayani. 2005. Produce digital maps of forest cover. 28:1-12.
16-   Fattahnia, F.1390. Biochemistry in animal nutrition. University of Ilam. pp. 321. 
17-   Getachew, G., M. Blummel, H. Makkar, and K. Becker. 1998. In vitro gas measuring techniques for assessment of nutritional quality of feeds: A review. Animal Feed Science and Technology, 72: 261-281.
18-   Hassan Sallam, S. M. A., I. C. Da Silva Bueno, P. B. De Godoy, F. N. Eduardo, D. M. S. Schmidt Vittib, and A. L. Abdalla. 2010. Ruminal fermentation and tannins bioactivity of some browses using a semi-automated gas production technique. Tropical and Subtropical Agro ecosystem, 12: 1 – 10.
19-   Hristov, A. N., and J. K. Ropp. 2003. Effect of dietary carbohydrate composition and availability on utilization of ruminal ammonia nitrogen for milk protein synthesis in dairy cows. Journal of Dairy Science, 86: 2416–2427.
20-   Kamalak, A., O. Canbolat, O. Ozay, and S. Aktas. 2004. Nutritive value oak (Quercus spp.) leave. Small Ruminant Research, 53:161-165.
21-   Khalil, J. K., W. N. Saxay, and S. Z. Heyder. 1986. Nutrient composition of Atriplex leaves growing in Saudi Arabia. Journal of Range Management, 39 (2): 104-107.
22-   Khazaal, K., J. Boza, and E. R. Orskov. 1994. Assessment of phenolics-related anti-nutritive effects in Mediterranean browse: a comparison between the use of the in vitro gas production technique with or without insoluble polyvinyl polypyrrolidone or nylon bag. Journal Animal Feed Science and Technology, 49: 133–149.
23-   Khoramzadeh, L., T. Mohammadabadi, M. Mamouei, M. Chaji, and M. Sari. 2017. The Comparison of Degradability, Digestion and Microbial Fermentation of Siris Leaves or Silk Tree Instead of the Alfalfa in Cow and Buffalo of Khuzestan. Iranian Journal of Animal Science Research, 8(4): 602-615. (In Persian).
24-   Kumar, A., A. K. Saluja, U. D. Shah, and A. V. Mayavanshi. 2007. Pharmacological potentioal of Albizzia lebbeck: a Review. Pharmacognosy Reviews, 1(1):171-174.
25-   Makkar, H. P. S. 2003. Effects and fate of tannins in ruminant animals, adaptation to tannins, and strategies to overcome detrimental effects of feeding tannin-rich feeds. Small Ruminant Research, 49: 241–256.
26-   Makkar, H. P. S. 2010. In vitro screening of feed resources for efficiency of microbial protein synthesis. In: Vercoe, P. E., H. P. S. Makkar., A. C.Schlink. (Eds.), In vitro Screening of Plant Resources for Extra-Nutritional Attributes in Ruminants: Nuclear and Related Methodologies. IAEA, Dordrecht, the Netherlands, pp. 107–144.
27-   Makkar, H. P. S. and B. Singh. 1993. Effect of storage and urea addition on detanification and in sacco dry matter digestibility of mature oak (Quercus incana) leaves. Animal Feed Science and Technology, 41: 247-259.
28-   Maldar, S. M., Y. Roozbehan, D. A. 2010. The Effect of Adaptation to Oak Leaves on Digestibility (in vitro) and Ruminal Parameters in Alamout Goat. Iranian journal of animal science, 41(3): 243-252. (In Persian).
29-   Malick, C. P. and M. B. Singh. 1980. In plant Enzymology and Histo Enzymology, Kalyani Publishers, New Dehli. p. 286
30-   Martın Garcıa, I., D. Yanez Ruiz, A. Moumen, and E. Molina Alcaide. 2006. Effect of polyethylene glycol, urea and sunflower meal on olive (Olea europaea var. europaea) leaf fermentation in continuous fermentors. Small Ruminant Research, 61: 53-61.
31-   Mashayekhi, K., and S. Atashi. 2016. Guide to Plant Physiology Experiments (Pre- and Post-harvest Surveys).  Agricultural Education Research. Tehran. pp 199.
32-   McDonald, P., R. A. Edwards, J. F. D. Greenhalgh, and C. A. Morgan. 1995. Animal Nutrition. 5th Edition. Oliver and Boyd Publishers (UK), pp. 607.
33-   Menke, K. H. and H. Steingass. 1978. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Animal Science Development, 28: 7-12.
34-   Menke, K. H., L. Raab, A. Solewski, H. Steingass, D. Fritz, and W. Schneider. 1979. The estimation of the digestibility and metabolisable energy content of ruminant feeding stuffs from the gas production when they are incubated with rumen liquor in vitro. Journal of Agriculture Science, 93: 217-222.
35-   Menke, K. H. and H. Steingass. 1988. Estimation of energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Journal of Animal Research and Development, 28: 7-55.
36-   Min, B. R., W. C. McNabb, P. D. Kemp, M. F. McDoland, and T. N. Barry. 2001. The effect of condensed tannins in Lotus corniculatus upon reproductive efficiency and wool production in ewes during autumn. Animal Feed Science and Technology, 92: 185–202.
37-   Min, B. R., W. E. Pinchak, J. D. Fulfordand, R. Puchala. 2005. Effect of feed additives on in vitro and in vivo rumen characteristics and frothy bloat dynamics in steers grazing wheat pasture. Animal Feed Science and Technology, 123: 615–629.
38-   Mlambo, V., J. L. N. Sikosana, F. L. Mould, T. Smith, E. Owen, and I. Mueller-Harvey. 2007. The effectiveness of adapted rumen fluid versus PEG to ferment tannin-containing substrates in vitro. Animal Feed Science and Technology, 136: 128-136.
39-   Moghadam, M. R. 1998. Range and Range management. Tehran university publisher, First Edition, 470pp. (In Persian)
40-   Molina-alcaide, E., A. I. Martín-garcía, A. Moumen, and M. D. Carro. 2010. Ruminal fermentation, microbial growth and amino acid flow in single-flow continuous culture fermenters fed a diet containing olive leaves. Journal of Animal Physiology and Animal Nutrition, 94:227-36.
41-   Mtui, D. J., F. P. Lekule, M. N. Shem, T. Ichinohe, and T. Fujihara. 2009. Comparative potential nutritive value of grasses, creeping legumes and multipurpose trees commonly in sub humid region in the Eastern parts of Tanzania. Livestock Research for Rural Development, 21 (10). http://www.lrrd.org/lrrd21/10/mtui21158.htm.
42-   Orskov, E. R., and I. M. McDonald. 1979. The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. Journal of Agriculture Science, 92:499-503.
43-   Osuji, P. O., and A. A. Odenyo, 1997. The role of legume forage as supplements to low quality roughage-ILRI experience. Animal Feed Science and Technology, 69: 27-38.
44-   Pal, D.T., K. M. Bujarbaruch, S. K. Mondal, and D. N. Kamra. 2002. Nutrient utilization of Mithun (Bos frontalis) calves on tree leaves feeding. Indian Journal of Animal Nutrition, 19(1): 87-89.
45-   Patra, A. K. 2011. Effects of essential oils on rumen fermentation, microbial ecology and ruminant production. Asian Journal of Animal and Veterinary Advances, 6: 416-428.
46-   Rajendiran, A.S. and R. Kadirvel. 2002. Nutritive value of Casuarina leaves (Cladode) for goats. Indian Journal of Animal Nutrition, 19 (1): 18-24.
47-   Rubanza, C .D .K., M. N. Shem, R. Otsyina, and T. Fujihara. 2007. Performance of Zebu steers grazing on western Tanzania native forages supplemented with Leucaena leucocephala leaf meal. Agroforestry Systems, 65(3):165-174
48-   Rubanza, C. D. K. 2005. Studies on utilization of browse tree fodder supplements to ruminants fed on low quality roughages in north-western Tanzania. PhD Thesis. Tottori University, Japan. pp. 44-47.
49-   Rubanza, C. D. K., M. N. Shem, T. Ichinohe, and T. Fujihara. 2006. Polyphenolics and mineral composition of selected browse tree species leaves native to north western Tanzania traditional fodder banks, Journal of Food, Agriculture and Environment, 4(1): 328-332.
50-   Sanon, H., O. Kabore, and C. Zoungrana. 2007. Behavior of goats, sheep and cattle and their selection of browse species on natural pasture in a Sahelian area. Small Ruminant Research, 67: 64-74.
51-   SAS .2000. SAS User’s Guide: Statistics, Version 9.1 Edition. SAS Institute, Cary, NC, USA.
52-   Seeram, N. P., Y. Zhang, D. Reed, C. G. J. Krueger, and J. Vaya. 2006. Pomegranate phytochemicals. CRC Press, Taylor and Francis Group, Boca Raton, FL.
53-   Sliwiniski, B. J., C. R. Soliva, A. Machmuller, and M. Kreuzer. 2002. Effects of plant rich in secondary constituents modify rumen fermentation. Animal Feed Science and Technology, 72: 183-187.
54-   Theodorou, M. K., B. A. Williams, M. S. Dhanoa, A. B. McAllan, and J. France. 1994. A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Animal Feed Science and Technology, 48: 185-97.
55-   Tilley, J. M. A., and R. A. Terry. 1963. A two stage technique for the in vitro digestion of forage crops. Journal of British Grassland Society, 18:104-110.
56-   Van Soest, P. J. 1994. Nutritional Ecology of the Ruminant. (Comstock Publishing Associated, a division of Cornell University Press: Ithaca, NY, USA).
57-   Waghorn, G. 2008. Beneficial and detrimental effects of dietary condensed tannins for sustainable sheep and goat production- progress and challenges. Animal Feed Science and Technology, 147: 116-139.
58-   Yildiz, S., I. Kaya, Y. Unal, D. Aksu Elmali, S. Kaya, M. Censiz, M. Kaya, and A. Oncuer. 2005. Digestion and body weight change in Tuj lambs receiving Oak (Quercus hartwissiana) leaves with and without PEG. Animal Feed Science and Technology, 122: 159-172.
59-   Yousef Elahi, M., and Y. Rouzbehan. 2008. Characteriztion of quercus persica ,quercus infectoria and quercus libani as ruminant feeds. Animal Feed Science and Technology, 140: 78-89.
60-   Yousef Elahi, M., M. Z. M. Moslemi Nia, A. Salem, H. Mansouri, J. A. Olivares-Perez, M. E. Cerrillo-Soto, and A. Kholif. 2014. Effect of poly ethylene glycol on in vitro gas production kinetics of Prosopis cineraria leaves at different growth stages. Italian Journal of Animal Science, 13: 3175.
61-   Zamani, O., F. Hozhabri, and F. Kafilzadeh. 2012. Effect of polyethylene glycol on in vitro rumen fermentation parameters of acorns (Quercus infectoria). 5th Iranian Animal Sciences congress. University of Isfahan. 21-25
CAPTCHA Image