اثر تعداد و توزیع اثرات QTL بر صحت پیش‌بینی‌های ژنومی برخی روش‌های آماری در یک صفت آستانه‌ای

نوع مقاله : علمی پژوهشی- ژنتیک و اصلاح دام و طیور

نویسنده

رازی کرمانشاه

چکیده

هدف این مطالعه استفاده از شبیه‌ سازی تصادفی برای محاسبه ارزش‌های اصلاحی ژنومی در سناریوهایی با تعداد و توزیع مختلف آماری برای اثرات QTL در یک صفت آستانه‌ای با استفاده از روش‌های بیزیA، B، C، L و R بود. برای شبیه سازی سناریوهای مختلف، ابتدا یک نسل پایه با تعداد 100 حیوان ایجاد شد که به مدت 50 نسل با هم آمیزش تصادفی داشتند. جمعیت مرجعی با اندازه 1000 حیوان از تلاقی تصادفی افراد نسل 50 ایجاد شد و برای این حیوانات یک صفت آستانه‌ای شبیه سازی شد. از تلاقی تصادفی افراد جمعیت مرجع، جمعیت تأیید ایجاد شد که فاقد اطلاعات فنوتیپی بودند. برای هر حیوان، ژنومی به طول 10 مورگان شبیه سازی شد و 10000 نشانگر با فواصل یکسان بر روی آن قرار گرفت. در هر سناریو QTL‌هایی با توزیع مختلف برای اثرات آن به صورت تصادفی بر روی ژنوم پخش شد. اثرات نشانگرها در جمعیت مرجع به وسیله روش‌های مختلف بیزی برآورد گردید و ارزش‌های اصلاحی ژنومی حیوانات فاقد فنوتیپ جمعیت تأیید با استفاده از این اثرات محاسبه شد. صحت ارزش‌های اصلاحی مبنای مقایسه سناریوهای مختلف این تحقیق قرار گرفت. در روش‌های بیزی مورد بررسی به استثنای روش بیزی R و L که در همه سناریوها صحت مشابهی داشتند، در بین سایر روش‌های بیزی، بیز B با تعداد دهQTL و توزیع گاما بالاترین صحت ارزش‌های اصلاحی را داشت. با افزایش تعداد QTL‌ها صحت ارزش‌های اصلاحی برآوردی با استفاده از روش‌های بیزی A، B وC کمتر شد، به گونه‌ای که برای تعداد 150 QTL و بالاتر صحت ارزش‌های اصلاحی آنها تقریبا برابر با روش بیزی R و L شد. به طور کلی نتایج این پژوهش نشان داد که روش‌های آماری مقایسه شده در معماری متفاوت صفت نتایج متفاوتی ارائه می‌دهند، ولی می‌توان برای صفات آستانه‌ای که با تعداد کمی ژن کنترل می‌شوند یا دارای یک یا چند ژن با اثر عمده هستند، از روش‌هایی مانند بیز B استفاده کرد.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of QTL Number and Distribution Effects on Some Statistical Methods Genomic Prediction of a Threshold Trait

نویسنده [English]

  • Saheb Foroutanifar
Razi university
چکیده [English]

Introduction Advances in high-throughput assays for genotyping single nucleotide polymorphisms (SNP) led to using these dense markers for predicting genomic breeding values, called genomic selection, and have been revolutionized both animal and crop breeding programs. The accuracy of genomic predictions is determined by the size of the reference population, extent of relationships between selection candidates and the reference population, linkage disequilibrium among markers and QTLs, the method used to estimate marker effects, and genetic architecture of the trait. Most of stuides on this topic focus on continuous traits, but some of economical important traits in livestock are threshold. Therefore, a stochastic simulation was used to compare 125 different scenarios for a threshold trait based on five 10, 50, 150, 500 and 2000 underlying QTL numbers, five normal, uniform, t, gamma and Laplace distributions for QTL effects and five BayesA, BayesB, BayesC, BayesL and BayesR methods for estimation of marker effects.
Materials and Methods In order to compare the different methods, R software were used to simulate datasets. Simulation started with a base population of 100 animals, including 50 male and 50 female, which randomly mated for subsequent 50 generations. Generations were discrete and number of animals for each generation fixed at 100 animals. Thereafter, by randomly mating of animals in generation 50, reference population generation with 1000 animals were obtained and a threshold trait was simulated for each of them. Finally, Next validation population generation was produced by randomly mating of animals from the previous generation. Simulated genome for each animal consisted of 10 chromosomes with equal 1 Morgan lengths, each having 1000 evenly spaced SNPs. In each scenario QTLs were randomly distributed on genome and their substitution effects were drawn from one of five normal, uniform, t, gamma and Laplace distributions. Marker effects were estimated in reference population using five different Bayesian methods that differ with respect to assumptions regarding distribution of marker effects, including: Bayes A, Bayes B, Bayes C, Bayes L and Bayes R. These estimated markers effects were used for genomic breeding value predictions of animals in validation population which did not have any phenotype. The accuracy of the different methods was calculated as correlation between true and estimated genomic breeding values.
Results and Discussion Results of this study showed that Bayes A, Bayes B and Bayes C predictions was affected by QTL numbers and distributions, while Bayes L and Bayes R had almost same accuracies for all scenarios. Scenario with gamma distribution for QTL effects and number of 10 QTLs had highest accuracy for Bayes A, Bayes B and Bayes C methods. Bayes C method was the best method when number of QTL was low. Increases in number of QTL from 10 to 150 were decreased accuracy of Bayes A, Bayes B and Bayes C methods and after that accuracy of different methods was constant and same. When distributions of QTL effects was uniform lower accuracy achieved rather than other distributions for same QTL number, instead distributions with unequal QTL variance like gamma increased accuracy of Bayes A, Bayes B, and Bayes C methods. These results were because of different extent of shrinkage of estimates of effects for different methods. Methods like Bayes B induced differential shrinkage of estimates relative to methods like Bayes R and Bayes L lead to higher accuracy for scenarios with low QTL number and unequal QTL variance.
Conclusion in a nutshell, different studied methods had diverse results for various QTL number and distribution, and its difficult to suggest a method that best in all situations. However, it is better to use methods like Bayes B when the number of QTLs was low and each QTL had not equal contribution to the trait of interest.

کلیدواژه‌ها [English]

  • Bayesian methods
  • Categorical trait
  • Genomic Selection
  • QTL
1- Calus, M. P. L, and R. F. Veerkamp. 2011. Accuracy of multi-trait genomic selection using different methods. Genetics Selection Evolution, 43(1): 26-39.
2- Daetwyler, H. D., R. Pong-Wong., B. Villanueva, and J. A. Woolliams. 2010. The impact of genetic architecture on genome-wide evaluation methods. Genetics, 185(3): 1021-1031.
3- de Los Campos, G., J. M. Hickey, R. Pong-Wong., H. D. Daetwyler, and M. P. Calus. 2013. Whole-genome regression and prediction methods applied to plant and animal breeding. Genetics, 193(2): 327-345.
4- Foroutanifar, S. 2015. Genomic Selection. Genetics in the 3rd Millennium, 12(4): 3680-3691. (In Persian).
5- Gianola, D. 1982. Theory and analysis of threshold characters. Journal of Animal Science, 54(5): 1079-1096.
6- Goddard, M. 2009. Genomic selection: prediction of accuracy and maximisation of long term response. Genetica, 136(2): 245-257.
7- Hayes, B, and M. E. Goddard. 2001. The distribution of the effects of genes affecting quantitative traits in livestock. Genetics Selection Evolution, 33(3): 209-229.
8- Hayes, B. J., P. J. Bowman., A. C. Chamberlain., K. Verbyla, and M. E. Goddard. 2009. Accuracy of genomic breeding values in multi-breed dairy cattle populations. Genetics Selection Evolution, 41(1): 51-59.
9- Hayes, B. J., P. J. Bowman., A. J. Chamberlain, and M. E. Goddard. 2009. Invited review: Genomic selection in dairy cattle: progress and challenges. Journal of Dairy Science, 92(2):433-443.
10- Karkkainen, H. P, and M. J. Sillanpaa. 2012. Back to basics for Bayesian model building in genomic selection. Genetics, 191(3): 969-987.
11- Meuwissen, T. H., B. Hayes, and M. Goddard. 2001. Prediction of total genetic value using genome-wide dense marker maps. Genetics, 157(4): 1819-1829.
12- Perez, P, and G. de los Campos. 2014. Genome-wide regression and prediction with the BGLR statistical package. Genetics, 198(2): 483-495.
13- Perez, P, and G. de Los Campos. 2014. Genome-wide regression & prediction with the BGLR statistical package. Genetics, 198: 483-495.
14- Resende, M. F. R., P. Munoz., M. D. V. Resende., D. J. Garrick., R. L. Fernando., J. M. Davis., E. J. Jokela., T. A. Martin., G. F. Peter, and M. Kirst. 2012. Accuracy of genomic selection methods in a standard data set of loblolly pine (Pinus taeda L.). Genetics, 190(4): 1503-1510.
15- Shirali, M., S. R. Miraei‐Ashtiani., A. Pakdel., C. Haley., P. Navarro, and R. Pong‐Wong. 2015. A Comparison of the sensitivity of the bayes C and genomic best linear unbiased prediction (GBLUP) methods of estimating genomic breeding values under different quantitative trait locus (QTL) model assumptions. Iranian Journal of Applied Animal Science, 5(1): 41-46.
16- Solberg, T., A. Sonesson., J. Woolliams, and T. Meuwissen. 2008. Genomic selection using different marker types and densities. Journal of Animal Science, 86(10): 2447-2454.
17- VanRaden, P. M., M. E. Tooker., J. R. Wright., C. Sun, and J. L. Hutchison. 2014. Comparison of single-trait to multi-trait national evaluations for yield, health, and fertility. Journal of Dairy Science, 97(12): 7952-7962.
18- Wang, C. L., X. D. Ding., J. Y. Wang., J. F. Liu., W. X. Fu., Z. Zhang., Z. J. Yin, and Q. Zhang. 2013. Bayesian methods for estimating GEBVs of threshold traits. Heredity, 110(3): 213-219.
CAPTCHA Image