بررسی اثر انتخاب واگرای وزن بدن و دوره تخم گذاری بلدرچین بر برخی ویژگی های فیزیکی و مکانیکی تخم بلدرچین ژاپنی

نوع مقاله : علمی پژوهشی- سایر

نویسندگان

دانشگاه فردوسی مشهد

چکیده

در این تحقیق ابتدا تغییرات استحکام پوسته و ویژگی‌های فیزیکی تخم بلدرچین در طول اولین دوره تخم گذاری پرنده بر روی 90 بلدرچین ژاپنی در سال 1390، در سه مرحله زمانی 15 هفتگی، 19 هفتگی و 23 هفتگی مورد مطالعه قرار گرفته و سپس تاثیرات انتخاب واگرای وزن بدن پرنده پس از پنج نسل انتخاب واگرا در سن چهار هفتگی بر روی تخم بلدرچین های نسل پنجم مورد بررسی قرار گرفت. برای اندازه گیری استحکام پوسته تخم بلدرچین ها در هر دو بخش پژوهش از دو روش آزمون فشار شبه استاتیک بین دو صفحه موازی دستگاه تست یونیورسال و اندازه گیری جرم مخصوص استفاده شد. در بخش اول تحقیق، هر چه از ابتدای دوره تخم گذاری به انتهای دوره نزدیکتر شد، انرژی شکست و جرم مخصوص تخم بلدرچین ها افزایش یافته و تغییر شکل و انعطاف پذیری تخم ها در برابر نیروهای خارجی بیشتر شد. جرم، حجم، قطر بزرگ، قطر میانی، میانگین قطر هندسی و سطح رویه نیز از ابتدا تا انتهای دوره تغییری نداشته و میانگین مقادیرشان به ترتیب g 41/12، cm3 51/11، mm 79/33، mm 10/26، mm 45/28 و mm2 2546 شد. در بخش دوم تحقیق نیز تخم بلدرچین های گروه کاهش وزن چهار هفتگی دارای وزن و حجم کمتر و ابعاد کوچکتر از تخم های گروه شاهد بودند ولی گروه افزایش وزن چهار هفتگی اختلاف کمی با گروه شاهد داشت، که بیانگر تاثیر بیشتر انتخاب واگرای وزن بدن بلدرچین ژاپنی در گروه کاهش وزن چهار هفتگی است. پارامترهای معرف وزن مخصوص و استحکام پوسته تخم بلدرچین ها نیز در سه گروه هیچ تفاوت معنی دار با یکدیگر نداشتند.

کلیدواژه‌ها


عنوان مقاله [English]

Effects of Divergent Selection Body Weight and the Quail Laying Eggs on some Physical and Mechanical Properties of Japanese Quail Eggs

نویسندگان [English]

  • mousareza baghani
  • Mohammad Hossein Aghkhani
Ferdowsi University of Mashhad
چکیده [English]

Introduction Breeding quail and quail egg industrial production because of the high nutritional value of these products has been developing these years. Considering the high demand and economical production, further development in the future is predicted. In order to design and effective utilization of the equipment for transportation, separation, packaging and storage, the physical and mechanical properties of quail eggs are needed. It is of great importance to study the factors which are influencing these properties. Strength of the shell is an important factor in determination of quail egg quality. Quail egg shell strength depends on several variables including specific gravity, egg weight and volume, shell thickness, weight and percentage of shell, hardness, breaking force, breaking energy, egg surface, farming conditions, type and species of birds, nutrition and geometric characteristics of eggs.
Materials and Methods In this paper, initially in three phases, at 15 weeks, 19 weeks and 23 weeks, shell strength changes and physical properties of quail eggs on 90 quails during their first period of laying eggs were studied. Measured properties were included dimensions, weight, volume, specific gravity, shell thickness, weight and percentage of shell, breaking force, breaking energy, egg surface and some other properties.
In the second part the effects of divergent selection for the bird’s body weight at four weeks of age on the quail eggs of fifth generation were studied. Measured properties were included dimensions, weight, volume, breaking force, breaking energy and some factors for direct and indirect measurement of strength of quail eggs. For direct measurement of the strength of eggshell of quail, two methods were employed: The first method was quasi-static compression test between two parallel plates of the universal testing machine and the second method was measuring specific gravity.
In the first method, eggs were compressed between two plates using universal testing machine. The compression speed was 6 cm/min and 10 cm/min. The egg sample was placed on the fixed plate and pressed with a moving plate connected to the load cell until its rupture.
In the second method, quail egg volume is measured by water displacement method, as they were weighed by digital scales and specific gravity is calculated by dividing weight per volume.
Results and Discussion In the first part of the study, through the time from beginning to end of the first period eggs (from 15 weeks to 23 weeks) breaking energy, specific gravity of quail eggs and also flexibility of eggs against external forces increased. Mass, volume, large diameter, central diameter, geometric diameter mean and surface of the shell from the beginning of the period to the end of it, remained unchanged and their mean values were respectively 12.41 gr, 11.51 cm3, 33.79 mm, 26.10 mm, 28.45 mm and 2546 mm2. From 15 weeks to 23 weeks of age, shape index and sphericity decreased. Mean values of shape index and sphericity were 0.769 and 84.21% respectively.
In the second part of this research, quail eggs of four weeks low body weight group were smaller and lighter than quail eggs of control group, but quail eggs of four weeks high body weight group did not show significant differences with quail eggs of control group, which suggesting greater heritability of body weight in the physical properties of the eggs. Strength and specific gravity parameters in the three groups did not differ significantly from each other. The results showed that quail egg shell strength after several generations of divergent selection for body weight has not been changed.
Conclusion Flexibility and thickness of the quail egg shell increased from the beginning of the first period to the end of the laying eggs period. This makes the eggs less vulnerable and increases their strength. In the second part of the research, it could be concluded that the physical properties of quail eggs in a divergent selection for the birds' body weight in order to weight loss is more effective compared to body weight gain group.

کلیدواژه‌ها [English]

  • Divergent selection
  • Laying eggs period
  • Mechanical properties
  • Physical properties
  • Quail Egg
1- Aarabi, H., M. Moradi shahrbabak., and A. Nejati javaremi. 2010. Response to selection and realized heritability of body weight at the age of 4 and 5 weeks in Japanese quail. Iranian Journal of Animal Science Research, 41(4):373-380. (In Persian).
2- Anderson, K. E., J. B. Tharrington, P. A. Curtis., and F. T. Jones. 2004. Shell characteristics of eggs from historic strains of Single Comb White Leghorn chickens and the relationship of egg shape to shell strength. International Journal of Poultry Science, 3: 17-19.
3- Aydın, C. 2002. Physical properties of hazelnuts. Bioprocess and Biosystems Engineering. 82: 297–303.
4- Bennett, C. D. 1992. The influence of shell thickness on hatchability in commercial broiler breeder flocks. Journal Applied Poultry Research, 1:61-65.
5- De Ketelaere, B., T. Govaerts., P. Couke., E. Dewil., T. Visscher., E. Decuypere., and J. De Baerdemaeker. 2002. Measuring the eggshell strength of 6 different strains of laying hens. Techniques and comparison. British Journal of Poultry Science, 43, 2: 238–244.
6- Havlicek, M., S. Nedomova., J. Simeonovova., L. Severa., and I. Krivanek. 2008. On the evaluation of chicken egg shape variability. Acta Universitatis agriculture et silviculture Mendelianae Brunensis, 5: 69-74.
7- Lichovnikova, M., L. Zeman, and J. Jandasek. 2008. The effect of feeding untreated rapeseed and iodine supplement on egg quality. Czech Journal of Animal Science, 53: 77-82.
8- Lin, H., K. Mertens., B. Kemps., T. Govaerts., B. De Ketelaere., J. De Baerdemaeker., E. Decuypere., and J. Buyse. 2004. New approach of testing the effect of heat stress on eggshell quality: mechanical and material properties of eggshell and membrane. British Journal of Poultry Science, 45: 476-482.
9- Machal, L. 2002. The relationship of shortening and strength of eggshell to some egg quality indicators and egg production in hens of different initial laying lines. Archives of animal breeding, 3: 287-296.
10- Marks, H. L. 1978. Long term selection for four-week body weight in Japanese quail under different nutritional environments. Poultry Science, 52: 105-111.
11- Minvielle, F. 2004. The future of Japanese quail for research and production. Worlds Poultry Science, 60: 500-507.
12- Mohsenin, N. N. 1986. Physical properties of plant and animal material. Gordon and Breach., New York.
13- Narushin, V. G. 1997. The avian egg: Geometrical description and calculation of parameters. Journal of Agricaltural Engineering Research, 68: 201–205.
14- Nedomova, S., J. Buchar., and J. Strnkova. 2013. Mechanical behaviour of ostrich’s eggshell at compression. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 3: 729-734.
15- Polat, F., S. Tarhan., M. Cetin., and U. Atay. 2007. Mechanical behaviour under compression loading and some physical parameters of japanese quail (Coturnix coturnix japonica) eggs. Czech Journal of Animal Science, 52: 50–56.
16- Robert, E., R. E. Ricklefs., and H. L. Marks. 1985. Anatomical response to selection for four-week body mass in Japanese quail. Journal of the American Ornithology, 102: 323-333.
17- Roque, L., and M. C. Soares. 1994. Effects of eggshell quality and broiler breeder age on hatchability. Poultry Science, 73: 1938-1945.
18- Trnka, J., J. Buchar., L. Severa., S. Nedomov., and P. Stoklasova. 2012. Effect of Loading Rate on Hen’s Eggshell Mechanics. Journal of Food Research, 4: 69-105.
19- Voisey, P. W., and J. R. Hunt. 1969. Effect of compression speed on the behaviour of eggshells. Journal of Agricultural Engineering Research, 14: 40-46.
CAPTCHA Image