اثر کنجاله سیاه دانه همراه با مولتی آنزیم بر عملکرد رشد و شاخص‌های بیوشیمیایی خون جوجه‌های گوشتی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 تغذیه طیور، دانشگاه محقق اردبیلی، اردبیل، ایران.

2 گروه علوم دامی، دانشگاه محقق اردبیلی، اردبیل، ایران.

3 تغذیه دام، دانشگاه محقق اردبیلی، اردبیل، ایران.

چکیده

این پژوهش به منظور بررسی تأثیر کنجاله سیاه دانه همراه با مولتی آنزیم بر عملکرد رشد و برخی عوامل مرتبط با سلامت جوجه­های گوشتی انجام گرفت. آزمایش مذکور در قالب طرح کاملاً تصادفی با 5 تیمار و 5 تکرار با تعداد 14 قطعه جوجه گوشتی راس 308 در هر تکرار و جمعاً با 350 قطعه جوجه گوشتی انجام شد. تیمارها شامل: جیره بدون کنجاله سیاه دانه و آنزیم (شاهد)، 5/7 درصد کنجاله سیاه دانه (بدون آنزیم)، 5/7 درصد کنجاله سیاه دانه و 2/0 درصد مولتی آنزیم، 15 درصد کنجاله سیاه دانه (بدون آنزیم)، 15 درصد کنجاله سیاه دانه و 2/0 درصد مولتی آنزیم از 10 تا 42 روزگی بودند. شاخص­های مورد بررسی شامل عملکرد رشد، درصد لاشه و وزن نسبی اجزای لاشه، برخی لیپیدهای سرم خون و ریخت­سنجی مخاط روده بودند. بطوری­که کمترین ضریب تبدیل غذایی در جوجه­های تغذیه شده با جیره شاهد و جیره حاوی 5/7 درصد کنجاله سیاه دانه بدون آنزیم مشاهده شد (05/0P<). درکل دوره آزمایشی نیز کمترین مصرف خوراک و افزایش وزن در گروه­های دریافت کننده 15 درصد کنجاله سیاه دانه (هر دو حالت با آنزیم و بدون آنزیم) مشاهده شد (05/0P<). کمترین ضریب تبدیل غذایی نیز در گروه شاهد و گروه دریافت کننده 5/7 درصد کنجاله سیاه دانه بدون آنزیم مشاهده شد (05/0P<). در نهایت در کل دوره آزمایشی وزن نهایی بدن در تیمار شاهد بیشترین بود. بیشترین میزان ضخامت پرز ژژنوم و ایلئوم نیز در جوجه­های دریافت کننده 5/7 درصد کنجاله سیاه دانه بدون آنزیم نسبت به  سایر گروه­ها مشاهده شد (05/0>P). بطور کلی، بر اساس نتایج حاصل استفاده از کنجاله سیاه دانه باعث افت عملکرد جوجه­ها شده و استفاده از مکمل آنزیمی هم نتوانست این اثرات منفی را رفع کند. استفاده از سطح 5/7 درصد کنجاله سیاه دانه تأثیر مثبتی بر شاخص­های ریخت­سنجی (بدون مصرف آنزیم) در جوجه­های گوشتی نشان داد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effect of Nigella Sativa meal with multi enzyme on growth performance and blood biochemical parameters of broiler chickens

نویسندگان [English]

  • Davood Ershadi 1
  • Bahmam Navidshad 2
  • Hossein Moheboddini 2
  • Farzad Mirzaei Aghjehgheshlagh 2
  • Samira Karamati jabehdar 3
1 Department of Animal Sciences, University of Mohaghegh Ardabili, Ardabil, Iran.
2 Department of Animal Science, University of Mohaghegh Ardabili, Ardabil, Iran.
3 Department of Animal Sciences, University of Mohaghegh Ardabili, Ardabil, Iran.
چکیده [English]

Introduction: This study was performed to evaluate the effects of nigella sativa meal and multi enzyme on growth performance, relative weight of carcass components, blood parameters and intestinal morphology of broiler chicken.
Materials and Methods: The experiment was carried out in a completely randomized design with five treatments in four replicates and 14 chickens in each replicate (80 chickens). Broiler chickens was fed with diets including: without nigella sativa meal and enzymes (control), 7.5% nigella sativa meal (without enzymes), 7.5% nigella sativa meal with 0.2% multi enzyme, 15% nigella sativa meal (without enzymes) and 15% nigella sativa meal with 0.2% multi enzyme for 42 days. Then, the performance of chickens, blood biochemical indicators, intestinal morphology and economic index were measured and recorded. Finally, the analysis of data was performed using GLM method by SAS software. The means were compared using Duncan's multiple range tests.
Results and Discussion: The results showed that, treatments did not have a significant effect on feed intake, daily weight gain and feed conversion ratio during the growth period. Whereas, the effect of experimental treatments was significant on feed intake, daily weight gain and feed conversion ratio in the finishing period. The lowest feed conversion ratio was observed in chickens fed control group and 7.5% nigella sativa meal without enzyme (P<0.05). In total experimental period, the lowest feed intake and weight gain were observed in the groups receiving 15% nigella sativa meal (both with and without enzymes; P<0.05). The lowest feed conversion ratio was observed in the control group and the group receiving 7.5% enzyme-free nigella sativa meal (P<0.05). Finally, in the total experimental period, the final body weight was significantly the highest in the control group (P<0.05). The high levels of nigella sativa meal and enzymes used in this study may have significantly reduced feed intake and feed conversion ratio due to the increase in fiber intake compared to lower levels. On the other hand, the use of different levels of nigella sativa meal and enzymes did not have significant effect on carcass percentages and carcass components, only using 15% nigella sativa meal without enzymes increased the ratio of intestinal length to live weight compared to other treatments. Due to the different results presented in different studies, the levels of use of nigella sativa meal in this study are probably less than the level affecting the relative weight of body organs. According to blood indices, the different treatments did not have any significant effect on serum lipids include cholesterol, triglyceride, HDL and LDL. The lack of significant effect of using different levels of nigella sativa meal in the present study is probably due to the use of low levels. Indeed, the use of enzymes with high levels of nigella sativa meal resulted in significantly increase in height of villus jejunum and ileum compared to the control group (P<0.05). The thickness of villus jejunum and ileum of broiler chicken fed 7.5% nigella sativa meal without enzyme increased significantly than the other treatments (P<0.05). The use of 15% nigella sativa meal significantly decreased villus height to crypt depth ratio of jejunum and ileum than the same level without enzymes, but 7.5% nigella sativa meal with enzyme resulted in higher villus height to crypt depth ratio than the without enzymes group (P<0.05). The improvement in villi height to crypt depth ratio may be related to the antimicrobial properties of black seed. For this reason, when the microbial activity in the contents of the intestine decreases at the surface of brush border, the need for enterocytes and new cells to multiply in the intestine decreases, resulting in higher villi height and less crypt depth. Since the main source of protein in poultry diets comes from soybean meal, replacing new and inexpensive sources is a great economic help to reduce feed costs. The replacement of soybean meal by nigella sativa meal decrease feed costs and increase profitability without adversely affecting the broilers.
Conclusion: According to the results, the use of nigella sativa meal reduced the performance of chickens and the use of enzyme supplements could not eliminate these negative effects. On the other hand, 7.5% nigella sativa meal (without enzyme supplements) had a positive effect on morphometric indices.

کلیدواژه‌ها [English]

  • Nigella Sativa
  • Growth Performance
  • Multi Enzyme
  • Morphometric
  1. Abaza, I. 2001. The use of some medical plants as feed additive in broiler diets. Ph.D. dissertation, poultry Nutrition Department, Alexandria University.
  2. Abbasi Mashinchizadeh, K., P. Farhoumand, and M. Daneshyar. 2013. Evaluation of the effects of different levels of black cumin seeds on the fatty acid composition of thigh meat and the weight of internal organs of broilers. National Conference on Modern Agricultural Sciences and Technologies. (in Persian).
  3. Abdelhady, A. A., A. A. AbdelAzeem, and A. G. Gamal. 2009. Effect of replacement of soybean meal protein by Nigella sativa meal protein on performance of growing Japanese quail. Egyption Poultry Science Journal, 29: 407-422.
  4. Abdo, Z. M. A. 2004. Effect of phytase supplementation on the utilization of Nigella sativa seed meal in broiler diets. Egyption Poultry Science Journal, 24:143-162.
  5. Abdollahi, A. 2012. Effects of black seed on the performance of broiler chicken. MSc. thesis. Kordestan University. Iran. (In Persian)
  6. Abou-El-Soud, S. B. 2000. Studies on some biological and immunological aspects in Japanese quail fed diet containing some Nigella sativa seeds preparations. Egyption Poultry Science Journal, 20: 757-776.
  7. Adibmoradi, M., B. Navidshad, J. Seifdavati, and M. Royan. 2006. Effect of dietary garlic meal on histological structure of small intestine in broiler chickens. Journal of Poultry Science. 43: 378-383.
  8. Akhtar, M. S., Z. Nasir, and A. R. Abid. 2003. Effect of feeding powdered Nigella sativa L. seeds on poultry egg production and their suitability for human consumption. Veterinarski arhiv, 73:181-190.
  9. AL-Beitawi, N. and S. S. El-Ghousein. 2008. Effect of Feeding Different Levels of Nigella Sativa Seeds (Black Cumin) on Performance, Blood Constituents and Carcass Characteristics of Broiler Chicks. Poultry Science, 7: 715-721.
  10. Al-Homidan, A., A. A. Al-qarawi, S. A. Al-waily, and S. E. I. Adam. 2002. Response of broiler chicks to dietary Rhazya stricta and Nigella sativa. British Journal of Poultry Science, 43:291-296.
  11. Al-Saleh, I. A., G. Billedo, and I. E. Inam. 2006. Level of selenium, DL-α-tocopgerol, DL-γ-tocopherol, all trans retinol, thymoquinone and thymol in different brands of Nigella Sativa Journal of Food Composition and Analyses, 19:167-175.
  12. Arslan, S. O., E. Gelir, F. Armutcu, O. Coskun, A. Gurel, H. Sayan, and I. L. Celik, 2005. The protective effect of thymoquinone on ethanol-induced acute gastric damage in the rat. Nutrition Research, 25: 673-680.
  13. Attia, Y. A., A. E. Tag El-Din, H. S. Zeweil, A. S. Hussein, E. M. Qota, and M. A. Arafat. 2008. The effect of supplementation of enzyme on laying and reproductive performance in Japanese quail hens fed Nigella seed meal. Poultry Science, 45:110-115.
  14. Aydin, R., M. Karaman, T. Cicek, and H. Yardibi. 2008. Black cumin (Nigella sativa L.) Supplementation into the diet of the laying hen positively influences egg yield parameters, shell quality, and decreases egg cholesterol. Poultry Science, 87:2590-2595.
  15. Badari, O. A., A. B. Abdel-Naim, M. H. Abdel-Wahab, and F. M. Hamada. 2002. The influence of thymoquinone on doxorubicin-induced hyperlipidemic nephropathy in rats. Toxicology, 143:219-226.
  16. Badari, O. A., R. A. Taha, A. M. Gamal-el-Din, and M. H. Abdel-Wahab. 2003. Thymoquinone is a potent superoxide anion scavenger. Drug Chemstry and Toxicolgy, 26:87-98.
  17. Bassim, A. 2003. Some characteristics of Nigella sativa seed cultivated in Egypt and its lipid profile. Food Chemistry, 83:63-68.
  18. Boka, J., A. H. Mahdavi, A. H. Samie, and R. Jahanian. 2014. Effect of different levels of black cumin (Nigella sativa L.) on performance, intestinal Escherichia coli colonization and jejunal morphology in laying hens. Journal of Animal Physiology and Animal Nutrition, 98(2): 373-383.
  19. Durrani, F. R., N. Chand, K. Zaka, A. Sultan, F. M. Khattak, and Z. Durrani, 2007. Effect of different levels of feed added black seed (Nigella sativa L.) on the performance of broiler chicks. Pakistan Journal of Bioogicall Science, 10: 4164-4167.
  20. El-Abhar, H. S., D. M. Abdallah, and S. Saleh. 2003. Gastroprotective activity of Nigella sativa oil and its constituent, thymoquinone, against gastric mucosal injury induced by ischaemia/reperfusion in rats. Journal of Ethnopharmacology, 84 (2-3): 251-258.
  21. El-Alfy, T. S., H. M. El-Fatatry, and M. A. Toama. 1975. Isolation and structure assignment of an antimicrobial prin ciple from the volatile oil of Nigella sativa. L. seeds. Pharmazia, 30: 109-111.
  22. El-Dakhakhny, M. 1996. Studies on the Egyptian Nigella sativa L: IV. Some pharmacological properties of the seeds’ active principle in comparison to its dihydro compound and its polymer. Journal de pharmacie de Belgique, 15: 1227-1229.
  23. El-Deek, A. A., M. Saffa, H. Hamy and M. M. Khalifah. 1999. Effects of Nigella seed oil meal in broiler diets on performance and physical and sensory characteristics of meat. Egyption Poultry Science Journal, 22: 207-225.
  24. Guler, T., B. Dalkilic, O. N. Ertas and M. Ciftci. 2006. The effect of dietary black cumin seeds (Nigella sativa L.) on the performance of broilers. Asian-Austr. Jounal of Animal Science, 19: 425-430.
  25. Hassan, I. I., A. A. Askar, A. Gehan and A. EL-Shourbagy. 2004. Influence of some medicinal plants on performances; physiological and meat quality traits of broiler chicks. Egyption Poultry Science Journal, 24: 247-266.
  26. Hernandez, F., J. Madrid, V. Garcia, J. Orengo, and M. D. Megias. 2004. Influence of two plant extract on broiler performance, digestibility and digestive organ size. Poultry Science, 83: 169-174.
  27. Hosseini-Vashan S. J. and T. Ghaznavi. 2018. Determination of Nutritive Value and Metabolizable Energy of Nigella sativa Meal Using Leghorn Cockerel and Predicted AMEn Models. Iranian Journal of Animal Science Research, 9 (4): 437-445
  28. Ismail, Z. S. H. 2011. Effects of dietary black cumin gumin growth seeds (Nigella sativa L.) or its extract on performance and total coliform bacteria count on broiler chicks. Asian Journal of Animal and Veterinary Advances, 5 (2): 128-135.
  29. Jamroz, D. and C. Kamel. 2002. Plant extracts enhance broiler performance. In non-ruminant nutrition: Antimicrobial agents and plant extracts on immunity, health and performance. Journal of Animal Science, 80 (1): 41-46.
  30. Khalaji. S., M. Zaghari, K. H. Hatami, S. Hedari-Dastjerdi, L. Lotfi and H. Nazarian. 2011. Black cumin seeds, Artemisia leaves (Artemisia sieberi), and Camellia L. plant extract as Phytogenic products in broiler diets and their effects on performance, blood constituents, immunity, and cecal microbial population. Poultry Science, 90: 2500-2510.
  31. Mahdavi, A. H., H. R. Rahmani, N. Nili, A. Samie H. S., Soleimanian-Zad and R. Jahanian. 2010. Effects of dietary egg yolk antibody powder on growth performance, intestinal Escherichia coli colonization, and immunocompetence of challenged broiler chicks. Poultry Science, 89: 484-494.
  32. Mahmoud, I., A. Alkofahi, and A. Abd El-Aziz. 1992. Mutagenic and Toxic activities of several species and some Jordanian medicinal plants. International Journal of Phaermacy, 30: 81-85.
  33. Miles, R. D., G. D. Butcher, P. R. Henry, and R. C. Littell. 2006. Effect of antibiotic growth promoters on broiler performance, intestinal growth parameters, and quantitative morphology. Journal of Poultry Science, 85:476-485.
  34. Mousapour, T. and M. salarmoini. 2014. Effect of using different levels of Nigella sativa meal on the growth performance and meat quality of Japanese quails. Iranian Journal of Animal Science Research. Volume 6 (1): 17-24.
  35. Osman, A. M. A. and M.A.A. El-Barody. 1999. Growth performance and immune response of broiler chicks as affected by diets density and Nigella sativa seeds supplementation. Egyptian Poultry Science, 19: 619-633.
  36. Ramezami, M., M. Afsharmanesh, R. Tahmasbi and E. Rostami Gohari. 2018. The Effect of Ferulaassa-Foetida Gum Powder Compare to Antibiotic on Performance, Microbial Population and Intestinal Morphology in Broiler Chickens. Research on Animal Production, 8 (17): 26-33. (In Persian)
  37. Saeid. J. M., A. B. Mohamed and M. A. Al‐Baddy. 2013. Effect of garlic powder (Allium sativum) and black seed (Nigella sativa) on broiler growth performance and intestinal morphology. Iranian Journal of Applied Animal Science. 3: 185-188.
  38. Shewita, R. S. and A. E. Taha. 2011. Effect of Dietary Supplementation of Different Levels of Black Seed (Nigella sativa L.) on Growth Performance, Immunological, Hematological and Carcass Parameters of Broiler Chicks. International Journal of Animal and Veterinary Sciences, 5(5): 304-310.
  39. Shirzadegan, K., P. Fallahpour, I. Nickkhah and H. R. Taheri, 2010. Black cumin (Nigella sativa) supplementation in the diet of broilers influences liver weight and its enzymes. MSc. Thesis in Animal science, Islamic Azad University, Rasht Branch, Rasht. (In Persian)
  40. Soltan, M. A. 1999. Effect of diet containing Nigella sativa (black seeds) on growth and productive performance of Japanese quail. Journal of Veterinary Science, 15: 655-669.
  41. Taheri, F. 2017. Comparative effect of black seed powder and meal on visceral function and traits, biochemical parameters and blood cells in Japanese broiler quail aged 1 to 28 days. MSc thesis, animal science. Malayer University. (In Persian)
  42. Talha, E., E. Abbas, and E. Mohamed. 2010. Effect of supplementation of Nigella sativa seeds to the broiler chicks' diet on the performance and carcass quality. International Journal of Agricultural Sciences, 2: 0975-3710.
  43. Tekeli, A. 2014. Nutritional value of black cumin meal as an alternative protein source in poultry nutrition. Journal of Animal Science Advanced, 4(4): 797-806.
  44. Toghyani, M., A. Toghyani, A. Geisari, G. Ghalamkari, and M. Mohammad rezaei. 2010. Growth   performance, serum biochemistry and blood hematology of broiler chick fed different levels of black seed (Nigella sativa L.) and peppermint (Mentha piperita).  Livestock Science, 129: 173-178.
  45. Tollba, A. A. H., and M. S. H. Hassan. 2003. Using some natural additives to improve physiological and productive performance of broiler chicks under high temperature conditions 2- black cumin (Nigella sativa) or garlic (Allium sativum). Egyption Poutry Science Journal, 23: 327-340.
  46. Visek, W. J. 1987. The mode of growth promotion by antibiotics. Journal of Animal Science, 46:1447-1469.
  47. Yason, C. V., B. A. Summers, and K.A. Schat. 1987. Pathogenesis of rotavirus infection in various age groups of chickens and turkeys. American Journal of Veterinary Research, 48: 927-938.
  48. Zeweil, H.S. 1996. Evaluation of substituting nigella seed meal for soy National Research Council (NRC). Nutrient Requirements of bean meal on the performance of growing and laying Japa-Poultry. Egyption Poutry Science Journal, 16: 451-477.
CAPTCHA Image