##plugins.themes.bootstrap3.article.main##

حمید آریان نژاد محمدرضا نصیری علی جوادمنش شاهرخ قوتی حسام دهقانی احمد آسوده

چکیده

ریبونوکلئازها خانواده تخریب کننده RNA هستند که در حال حاضر به شکل وسیعی به خدمت سلامت انسان آمده اند. ریبونوکلئاز پانکراتیک گاوی به عنوان قویترین و رانپیرناز به عنوان نفوذپذیر ترین ریبونوکلئاز به سلول پستانداران شناخته می شوند. پروتئین ویژه ممانعت کننده فعالیت ریبونوکلئازی7 (RI) و عدم توانایی نفوذ آنزیم ریبونوکلئاز پانکراتیک گاوی، مانع بزرگ استفاده از این ریبونوکلئاز، به منظور ساخت ایمنوتوکسین هاست. از اینرو در این مطالعه، با بررسی ویژگیهای پروتئینی ریبونوکلئاز پانکراتیک گاوی، مسیر ویژه‌ای به منظور مهندسی آنزیم رانپیرناز با ویژگیهای همچون فرار از RI، افزایش نفوذپذیری و افزایش سمیت سلولی و پایداری آنزیم با توجه به ساختار ریبونوکلئاز پانکراتیک گاوی طراحی گردید. بدین منظور، ساختار سوم مربوط به پروتئین‌های ریبونوکلئاز پانکراتیک گاوی، رانپیرناز و ممانعت کننده فعالیت ریبونوکلئازی از سرور PDB استخراج و سپس با استفاده از سرور آنلاین ClusPro داکینگ صورت گرفت. پیوندهای N-O کمتر از 5/3 آنگستروم بین آنزیم ها و RI با استفاده از نرم افزار PyMOL استخراج و در نهایت آمینواسیدهای کاندید شناسایی شدند. پس از طراحی آنزیم جهش یافته، بررسی اتصال آنزیم با RI توسط دینامیک مولکولی مورد بررسی قرار گرفت. نتایج نشان داد رانپیرناز با 4 جهش لیزین 45، 49 و 55 به آرژنین و سرین 72 به آلانین دارای سمیت سلولی بالاتر نسبت به آنزیم طبیعی بوده و همچنین با توجه به عدم اتصال در محیط دینامیک مولکولی قابلیت فرار از RI را دارد. این پروتئین براساس آنالیزهای RMSD، RMSF و شعاع ژراسیون به شکل کاملا پایدار بوده و می تواند در تحقیقات تولید ایمنوتوکسین ها بکار گرفته شود.

جزئیات مقاله

کلمات کلیدی

رانپیرناز, ریبونوکلئاز پانکراتیک گاوی, محاسبات دینامیک مولکولی, مهارکننده ریبونوکلئازی

مراجع
1. Allahyari H., S. Heidari, M. Ghamgosha, P. Saffarian and J Amani. 2017. Immunotoxin: A new tool for cancer therapy. Tumour Biology, 39(2):1-11.
2. Ardelt W., K. Shogen and Z. Darzynkiewicz. 2008. Ranpirnase and amphinase, the antitumor ribonucleases from Rana pipiens oocytes. Current Pharmaceutical Biotechnology, 9(3):215-225.
3. Arnold U. and R. Ulbrich-Hofmann. 2006. Natural and engineered ribonucleases as potential cancer therapeutics. Biotechnology Letters, 28:1615–1622.
4. Aryani A. and B Denecke. 2015. In vitro application of ribonucleases: comparison of the effects on mRNA and miRNA stability. BMC Research Notes, 8:164-172.
5. Boix E., Y. Wu, V. M. Vasandani, S. K. Saxena, W. Ardelt, J. Ladner and R. J. Youle. 1996. Role of the N terminus in RNase A homologues: differences in catalytic activity, ribonuclease inhibitor interaction and cytotoxicity. Journal of Molecular Biology, 257(5):992-1007.
6. Cuchillo C. M., M. V. Nogués and R. T. Raines. 2011. Bovine pancreatic ribonuclease: fifty years of the first enzymatic reaction mechanism. Biochemistry, 50(37):7835-41.
7. DeLano W. L. 2002. Pymol: An open-source molecular graphics tool. CCP4 Newsletter on Protein Crystallography, 40: 82-92.
8. Erickson H. A., M. D. Jund and C. A. Pennell. 2006. Cytotoxicity of human RNase-based immunotoxins requires cytosolic access and resistance to ribonuclease inhibition. Protein Engineering, Design and Selection. 19(1):37-45.
9. Fagagnini A., A. Pica, S. Fasoli, R. Montioli, M. Donadelli, M. Cordani, E. Butturini, L. Acquasaliente, D. Picone and G. Gotte. 2017. Ranpirnase dimerization through 3D domain swapping: structural investigations and increase in the apoptotic effect in cancer cells. Biochemical Journal, 474(22):3767-3781.
10. Fett J.W., D. J. Strydom, R. R. Lobb, E. M. Alderman, J. L. Bethune, J. F. Riordan and B. L. Vallee. 1985. Isolation and characterization of angiogenin, an angiogenic protein from human carcinoma cells. Biochemistry, 24:5480–5486.
11. Findlay D., D. G. Herries, A. P. Mathias, B. R. Rabin and C. A. Ross. 1961. The active site and mechanism of action of bovine pancreatic ribonuclease. Nature,190:781–784.
12. Goo S. M. and S. Cho. 2013. The expansion and functional diversification of the mammalian ribonuclease a superfamily epitomizes the efficiency of multigene families at generating biological novelty. Genome Biology and Evolution, 5: 21-28.
13. Johnson R. J., J. G.McCoy, C. A. Bingman, G. N. Phillips and R. T. Raines. 2007. Inhibition of human pancreatic ribonuclease by the human ribonuclease inhibitor protein. Journal of Molecular Biology, 368(2), 434–449.
14. Khazanov N. A. and H. A. Carlson. 2013. Exploring the composition of protein-ligand binding sites on a large scale. PLOS Computational Biology, 9(11): e1003321.
15. Leland P. A. and R. T. Raines. 2001. Cancer chemotherapy ribonucleases to the rescue. Chemistry & Biology, 8(5):405-13.
16. Lu L., J. Li, M. Moussaoui and E. Boix. 2018. Immune Modulation by Human Secreted RNases at the Extracellular Space. Frontiers in Immunology, 16;9:1012.
17. Merlino A., L. Mazzarella, A. Carannante, A. Di Fiore, A. Di Donato, E. Notomista and F. Sica. 2005. The importance of dynamic effects on the enzyme activity: X-ray structure and molecular dynamics of ranpirnase mutants. Journal of Biological Chemistry, 280(18):17953-60.
18. Narayanan C., D. N. Bernard, K. Bafna, D. Gagné, P. K. Agarwal and N. Doucet. 2018. Ligand-Induced Variations in Structural and Dynamical Properties Within an Enzyme Superfamily. Frontiers in Molecular Biosciences, 12: 54-60.
19. Ponomarenko J.V. and P.E. Bourne. 2007. Antibody-protein interactions: benchmark datasets and prediction tools evaluation. BMC Structural Biology. 7: 64-85.
20. Richards F. M. and H. W. Wyckoff. 1971. Bovine pancreatic ribonuclease. The Enzymes IV, 647–806.
21. Rutkoski T. J. and R. T. Raines. 2008. Evasion of ribonuclease inhibitor as a determinant of ribonuclease cytotoxicity. Current Pharmaceutical Biotechnology, 9(3):185-189.
22. Schmohl J. U., D. Todhunter, E. Taras, V. Bachanova and D. A. Vallera. 2018. Development of a Deimmunized Bispecific Immunotoxin dDT2219 against B-Cell Malignancies. Toxins (Basel), 6;10(1):32-39.
23. Smolewski P., M. Witkowska, M. Zwolinska, B. Cebula-Obrzut, A. Majchrzak, A. Jeske, Z. Darzynkiewicz, W. Ardelt, B. Ardelt and T. Robak. 2014. Cytotoxic activity of the amphibian ribonucleases ranpirnase and r-amphinase on tumor cells from B cell lymphoproliferative disorders. International Journal of Oncology, 45(1):419-25.
24. Sun M., L. Sun, D. Sun, C. Zhang and Li M. 2018. Targeted delivery of immuno-RNase may improve cancer therapy. Cancer Cell International, 16:18:58-65.
25. Sundlass N. K. and R. T. Raines. 2011. Arginine residues are more effective than lysine residues in eliciting the cellular uptake of ranpirnase. Biochemistry, 50(47), 10293-9.
26. Turcotte R. F., L. D. Lavis and R. T. Raines. 2009. Ranpirnase cytotoxicity relies on the distribution of its positive charge. The FEBS Journal, 276(14), 3846-57.
27. Vakili Azghandi M., M. Nassiri and A. Javadmanesh. 2017. Engineering of bovine pancreatic ribonuclease to induce apoptosis in cancer cell. Proceedings of the 3rd International Nastaran Cancer Symposium, Mashhad University of Medical Sciences, Iran. Page 110.
28. Van Der Spoel D., E. Lindahl, B. Hess, G. Groenhof, A. E. Mark and H. J. Berendsen. 2005. GROMACS: fast, flexible, and free. Journal of Computational Chemistry, 26(16):1701-18.
29. Wu Y., S. M. Mikulski, W. Ardelt, S. M. Rybak and R. J. Youle. 1993. A cytotoxic ribonuclease. Study of the mechanism of ranpirnase cytotoxicity. Journal of Biological Chemistry. 268:10686–10693.
ارجاع به مقاله
آریان نژادح., نصیریم., جوادمنشع., قوتیش., دهقانیح., & آسودها. (2020). طراحی ساختار پروتئینی آنزیم رانپیرناز به عنوان ایمنوتوکسین براساس ریبونوکلئاز پانکراتیک گاوی با استفاده از مطالعات دینامیک و استاتیک مولکولی. پژوهشهای علوم دامی ایران, 12(3), 351-360. https://doi.org/10.22067/ijasr.v12i3.81620
نوع مقاله
علمی پژوهشی- ژنتیک و اصلاح دام و طیور