##plugins.themes.bootstrap3.article.main##

یحیی خالقی فرد محمد رکوعی احمد مقیمی اسفند آبادی هادی فرجی آروق

چکیده

منظور کردن گروه­بندی ژنتیکی در مدل­های ارزیابی می­تواند تفاوت­های مورد انتظار در ارزش­های اصلاحی حیوانات که به دلیل نامعلوم بودن والدین تخمین زده نمی­شود را نشان دهد. هدف از مطالعه حاضر برآورد پارامترهای ژنتیکی و روند ژنتیکی صفات تولیدی (تولید شیر، چربی و پروتئین) گاوهای هلشتاین ایران براساس یک مدل حیوانی بدون در نظر گرفتن (مدل 1) و با در نظر گرفتن گروه­بندی ژنتیکی (مدل 2) بود. بدین منظور از اطلاعات صفات تولیدی گاوهای هلشتاین سه شکم زایش که توسط مرکز اصلاح نژاد دام کشور تا سال 1392 جمع­آوری شده بود، استفاده شد. برای حیوانات با پدر و مادر نامعلوم، گروه­بندی ژنتیکی براساس سال و جنس تولد انجام گرفت. تجزیه و تحلیل برای صفات در دوره­های شیردهی مختلف با و بدون در نظر گرفتن گروه­بندی ژنتیکی انجام شده و روند ژنتیکی محاسبه گردید. برای بررسی تغییر در رتبه­بندی حیوانات در نتیجه در نظر گرفتن گروه­بندی ژنتیکی از همبستگی رتبه­ای اسپیرمن استفاده شد. نتایج نشان داد که در نظر گرفتن گروه ژنتیکی در مدل باعث کاهش واریانس ژنتیک افزایشی و وراثت­پذیری تمامی صفات شد. رتبه­بندی حیوانات با منظور کردن گروه­بندی ژنتیکی تغییر کرده و این تغییر برای 10 درصد بهترین نرها نسبت به کل حیوانات، کل نرها و ماده­ها بیشتر بود. روند ژنتیکی و صحت برآوردهای ارزش اصلاحی بین دو مدل 1 و 2 دارای تفاوت معنی­دار بود. مدل 2 ارزش­های اصلاحی با صحت بالاتری و همچنین روند ژنتیکی بیشتری نسبت به مدل 1 داشت. نتایج نشان داد که افزودن گروه­بندی ژنتیکی برای داده­هایی با والدین نامعلوم باعث برآورد دقیق­تر ارزش اصلاحی می­شود.

جزئیات مقاله

کلمات کلیدی

روند ژنتیکی, گروه¬بندی ژنتیکی, هلشتاین, همبستگی اسپیرمن

مراجع
Butler, D. G., B. R. Cullis, A. R. Gilmour, and B. J. Gogel. 2009. ASReml-R reference manual. The State of Queensland, Department of Primary Industries and Fisheries, Brisbane. Available at http:// discoveryfoundation.org.uk/downloads/asreml/release3/asreml-R.pdf.
2- Cantet, R. J., L. R. Schaeffer, and C. Smith. 1992. Reduced animal model with differential genetic grouping for direct and maternal effects. Journal of Animal Science, 70(6):1730-1741.
3- Casellas, J., J. Piedrafta, and L. Varona. 2007. Bayes factor for testing between different structures of random genetic groups: A case study using weaning weight in Bruna dels Pirineus beef cattle. Genetic Selection Evolution, 39:39–53.
4- Da, Y., and M. Grossman. 1991. Multitrait animal model with genetic groups1. Journal of Dairy Science, 74(9):3183-3195.
5- Dahlin, A., U. N. Khan, A. H. Zafar, M. Saleem, M. A. Chaudhry, and J. Philipsson. 1998. Genetic and environmental causes of variation in milk production traits of Sahiwal cattle in Pakistan. Animal Science, 66(2): 307-318.
6- Famula, T., and L. Van Vleck. 1982. Monte Carlo study of genetic groups in sire evaluation. Journal of Dairy Science, 65:1286–1293.
7- Florence, P., and D. Lalon. 2004. Should genetic groups be fitted in BLUP evaluation? Practical answer for the French AI beef sire evaluation. Genetic Selection Evolution, 36(3):325-345.
8- Geldermann, H., U. Pieper, and W. E. Weber. 1986. Effect of misiden-tification on the estimation of breeding value and heritability in cattle. Journal of Animal Science, 63:1759–1768.
9- Golden, B. L., R. M. Bourdon, and W. M. Snelling. 1994. Additive genetic groups for animals evaluated in more than one breed association national cattle evaluation. Journal of Animal Science, 72(10):2559-2567.
10- Henderson, C. R. 1949. Estimation of changes in herd environment. Journal of Dairy Science, 32: 709 (Abstr).
11- Henderson, C. R. 1975a. Use of all relatives in intraherd prediction of breeding values and producing abilities. Journal of Dairy Science, 58(12):1910-1916.
12- Henderson, C. R. 1975b. Use of relationships among sires to increase accuracy of sire evaluation. Journal of Dairy Science, 58(11):1731-1738.
13- Hickey, J. M., M. G. Keane, D. A. Kenny, A. R. Cromie, and R. F. Veerkamp. 2007. Genetic parameters for EUROP carcass traits within different groups of cattle in Ireland. Journal of Animal Science, 85(2):314-321.
14- Hickey, J. M., M. G. Keane, D. A. Kenny, A. R. Cromie, H. A. Mulder, and R. F. Veerkamp. 2008. Estimation of accuracy and bias in genetic evaluations with genetic groups using sampling. Journal of Animal Science, 86(5):1047-1056.
15- Hosseinpour Mashhadi, M., M. R. Nassiri, N. Emam Jomeh Kashan, and R. Vaez Torshizi. 2007. Prediction breeding value and genetic parameter in Iranian Holstein bulls for milk production traits. Pakistan Journal of Biological Sciences, 11 (3): 108-112.
16- Jafari Torbaghan, M., H. Farhangfar, M. Bashtani, B. Mohammad Nazari, and H. Sarir. 2012. Genetic evaluation of cows for milk protein yield trait using fixed and random regression test day models. Animal Production Research, 1(2): 9-20.
17- Joaquim, C., J. Piedrafita, and L. Varona. 2007. Bayes factor for testing between different structures of random genetic groups: A case study using weaning weight in Bruna dels Pirineus beef cattle. Genetic Selection Evolution, 39(1):39-53.
18- Mosharraf, R., J. Shodja, M. Bohlouli, S. Alijani, and S. A. Rafat. 2014. Estimation of (co) variance components and breeding values for test-day milk production traits of Holstein dairy cattle via Bayesian approach. Biotechnology in Animal Husbandry, 30: (1): 15-28.
19- Mrode, R. A., and R. Thompson. 2005. Linear Models for the Prediction of Animal Breeding Values. 2nd ed. CABI Pub.
20- Oliveira Júnior, G. A., J. P. Eler, J. B. S. Ferraz, J. Petrini, E. C. Mattos, and G. B. Mourão. 2013. Prediction of breeding values in beef cattle using different defnitions of additive genetic groups. Revista Brasileira de Saúde e Produção Animal, 14: 277–286.
21- Petrini, J., S. F. N. Pertile, J. P. Eler, J. B. S. Ferraz, E. C. Mattos, L. G. G. Figueiredo, and G. B. Mourão. 2015. Genetic grouping strategies in selection efficiency of composite beef cattle (Bos taurus× Bos indicus). Journal of Animal Science, 93(2): 541-552.
22- Phocas, F., and D. Laloë. 2004. Genetic parameters for birth and weaning traits in French specialized beef cattle breeds. Livestock Production Science, 89:121–128.
23- Piermati, C., and L. D. Van Vleck. 1993. Effect of genetic groups on estimates additive genetic variance. Journal of Animal Science, 71(1): 66-70.
24- Pollak, E. J., and R. L. Quaas. 1983. Definition of group effects in sire evaluation models. Journal of Dairy Science, 66(7):1503-1509.
25- Razm kabir, M., A. Nejati Javaremi, M. Moradi Shahr Babak, A. Rashidi, and M. Sayadnejad. 2009. Estimation of genetic trend for production traits of Holstein cattle in Iran. Iranian Journal of Animal Science, 40(1):7-11 [In Persian].
26- Robinson, G. K. 1986. Group effects and computing strategies for models for estimating breeding values. Journal of Dairy Science, 69(12):3106-3111.
27- Rokouei, M., R. Vaez Torshizi, M. Moradi Shahrbabak, M. Sargolzaei, and A. C. Srensen. 2010. Monitoring inbreeding trends and inbreeding depression for economically important traits of Holstein cattle in Iran. Journal of Dairy Science, 93(7): 3294-3302.
28- Saheb Honar, M.; M. Moradi Shahr Babak, S. R. Miraei Ashtiani, and M. Bagher Sayad Nezhad. 2010. An Estimation of genetic trend for production traits and a determination of the impact of some factors on it in Iranian Holstein cattle. Iranian Journal of Animal Science, 41(2):173-184 [In Persian].
29- Sargolzaei, M., H. Iwaisaki, and J. J. Colleau. 2006. CFC: A tool for monitoring geneic diversity. In 8th World Congress on Geneics Applied to Livestock Producion, Belo Horizonte, Brazil.
30- Shiotsuki, L., F. F. Cardoso, J. A. Silva, and L. G. Albuquerque. 2013. Comparison of a genetic group and unknown paternity models for growth traits in Nellore cattle. Journal of Animal Science, 91(11):5135-5143.
31- Sullivan, P. 1995. Alternatives for genetic evaluation with uncertain parentage. Canadian Journal of Animal Science, 75:31–36.
32- Theron, H., F. Kanfer, and L. Rautenbach. 2002. The effect of phantom parent groups on genetic trend estimation. South African Journal of Animal Science, 32:130–135.
33- Van der Werf, J. H., and I. J. de Boer. 1990. Estimation of additive genetic variance when base populations are selected. Journal of Animal Science, 68(10): 3124-3132.
34- Visscher, P. M., and R. Thompson. 1992. Univariate and multivariate parameter estimates for milk production traits using an animal model. I. Description and results of REML analyses. Genetics Selection Evolution, 24(5): 415 (Abstr).
35- Weller, J. I., and E. Ezra. 2004. Genetic analysis of the Israeli Holstein dairy cattle population for production and nonproduction traits with a multitrait animal model. Journal of Dairy Science, 87(5): 1519-1527.
36- Westell, R. A., R. L. Quaas, and L. D. Van Vleck. 1988. Genetic groups in an animal model. Journal of Dairy Science, 71(5):1310-1318.
37- Yaeghoobi, R., A. Doosti, A. M. Noorian, and A. M. Bahrami. 2011. Genetic parameters and trends of milk and fat yield in Holstein, s dairy cattle of West provinces of Iran. International Journal of Dairy Science, 6: 142-149.
ارجاع به مقاله
خالقی فردی., رکوعیم., مقیمی اسفند آبادیا., & فرجی آروقه. (2020). تجزیه و تحلیل ژنتیکی صفات تولیدی گاوهای هلشتاین ایران با در نظر گرفتن گروه¬بندی ژنتیکی. پژوهشهای علوم دامی ایران, 12(3), 361-372. https://doi.org/10.22067/ijasr.v12i3.76344
نوع مقاله
علمی پژوهشی- ژنتیک و اصلاح دام و طیور