##plugins.themes.bootstrap3.article.main##

مرجان احمدی علی اسمعیلی زاده کشکوئیه احسان نصیری فر

چکیده

یک جمعیت نسل دوم از بلدرچین ژاپنی برای یافتن جایگاه‌های ژنی مربوط به صفات لاشه روی کروموزوم 5 با استفاده از نشانگرهای ریزماهواره بررسی شد. جمعیت مورد مطالعه حاصل از تلاقی دو سویه سفید و وحشی بلدرچین ژاپنی و صفات مورد بررسی شامل وزن لاشه گرم و سرد، وزن اندام‌های داخلی و قطعات لاشه پرندگان بودند. بعد از انجام واکنش زنجیره‌ای پلیمراز، افراد برای نشانگرهای به کاربرده شده با استفاده از نرم افزار AlphaEaseFC 4.0 تعیین ژنوتیپ شدند. والدین (P0)، پرندگان نسل F1 و F2 با استفاده از 3 مارکر میکروساتلایت ژنوتیپ یابی شدند. آنالیز داده‌ها با استفاده از نقشه یابی مبتنی بر رگرسیون صورت گرفت. QTLهای معنی‌دار برای صفات بازدهی لاشه، وزن مطلق و نسبی سینه، وزن نسبی و مطلق کبد، وزن مطلق و نسبی پشت، وزن مطلق و نسبی طحال، وزن سنگدان و وزن سر شناسایی شد. نسبت واریانس فنوتیپی نشان داده شده به وسیله آثار معنی‌دار افزایشی، غلبه و ایمپرینتینگ QTL از 22/2 تا 11/11 درصد بود. نتایج نشان دادند که جایگاه شناسایی شده برای بعضی از صفات لاشه در کروموزوم 5 یکسان بود که با توجه به ویژگی‌های صفات کمی (شامل اثرات پلیوتروپی و اپیستازی) می‌تواند در تفاوت فنوتیپی صفت تأثیرگذار باشد. چنین نتایجی نشان‌دهنده همبستگی ژنتیکی در میان صفات و پاسخ همبسته به انتخاب است.

جزئیات مقاله

مراجع
1- Anderson, L. and M. Georges. 2004. Domestic animal genomics: deciphering the genetics of complex traits. Nature Reviews Genetics, 5: 202-212.
2- Anholt, R. R. and T. F. Mackay. 2004. Quantitative genetic analyses of complex behaviors in Drosophila. Nature Reviews Genetics, 5: 838–849.
3- Baron, E. E., A. S. Moura., M. C. Ledur., L. F. Pinto., C. Boschiero., D. C. Ruy., K. Nones., E. L. Zanella., M. F. Rosario., D. W. Burt, and L. L. Coutinho. 2010. QTL for percentage of carcass and carcass parts in a broiler × layer cross. Animal Genetics, 42(2): 117–124.
4- Bassam, B. J., G. Caetano-Anollés, and P. M. Gresshoff, 1991. Fast and sensitive silver staining of DNA in polyacrylamide gels. Analytical Biochemistry, 196: 80-83.
5- Cain, J. R. and W. O. Cawley. 1972. Care Management Propagation: Japanese quail (Coturnix). Texas Agricultural Experiment Station. Available at http://hdl.handle.net /1969.1/92988.
6- Charati, H., A. K. Esmailizadeh., R. Jabbari Ori., H. Moradian., A. Ayatollahi Mehrgardi. 2014. Detection of quantitative trait loci affecting carcass traits and internal organs on chromosome 3 in an F2 intercross of Japanese quail. Animal Science Papers and Reports, 4: 369-383.
7- Cheng, K. and M. Kimura. 1990. Mutations and Major Variants in Japanese Quail. Pages 333-362 in Poultry Breeding and Genetics. R. D. Crawford ed. Amsterdam.
8- Churchill, G. A. and R. W. Doerge. 1994. Empirical threshold values for quantitative trait mapping. Genetics, 138: 967-971.
9- Crawford, R. D. 1990. Origin and History of Poultry Species. Pages 1-41 in Poultry Breeding and Genetics. R. D. Crawford ed. Amsterdam.
10- Ellegren, H. 2004. Microsatellites: simple sequences with complex evolution. Nature Reviews Genetics, 5: 435-445.
11- Esmailizadeh, A. K., A. Baghizadeh, and Ahmadizadeh, M. 2012. Genetic mapping of quantitative trait loci affecting bodyweight on chromosome 1 in a commercial strain of Japanese quail. Animal Production Science, 52: 64-68.
12- Kayang, B. B., M. Murayama., T. Hoshi., K. Matsuo., H. Takahashi., M. Minezawa., M. Mizutani, and S. Ito. 2001. Microsatellite loci in Japanese quail and cross-species amplification in chicken and guinea fowl. Genetics Selection Evolution, 34: 233–253.
13- Knott, S. A., L. Marklund., C. S. Haley., K. Anderson., W. Davies., H. Ellegren., M. Fredholm., B. Hoyheim., I. Hannsson., K. Lundstrom., M. Moller, and L. Andersson. 1998. Multiple marker mapping of quantitative trait loci in an outbred cross between wild boar and large white pigs. Genetics, 149:1069-1080.
14- Miller, S. A., D. D. Dykes, and H. F. Polesky. 1988. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Research, 16: 1215.
15- Minvielle, F. 2004. The future of Japanese quail for research and production. World’s Poultry Science, 60:500-507.
16- Minvielle, F., S. Ito, M. Inoue-Murayama., M. Mizutani, and N. Wakasugi. 2000. Genetic analyses of plumage color mutations on the Z chromosome of Japanese quail. The Journal of Heredity, 91: 499–501.
17- Montaldo, H. H. and C. A. Meza-Herrera. 1998. Use of molecular markers and major genes in the genetic improvement of livestock. Electronic Journal of Biotechnology, 1(2): 15-16.
18- Moradian, H., A. K. Esmailizadeh., S. S. Sohrabi., E. Nasirifar., N. Askari., M. R. Mohammadabadi, and A. Baghizadeh. 2014. Genetic analysis of an F2 intercross between two strains of Japanese quail provided evidence for quantitative trait loci affecting carcass composition and internal organs. Molecular Biology Reports, 41: 4455–4462.
19- Moura, A. S. A. M. T., C. Boschiero., R. L. R. Campos., M. Ambo., K. Nones., M. C. Ledur., M. F. Rosario., C. M. R. Melo., D. W. Burt, and L. L. Coutinho. 2006. Mapping QTL for performance and carcass traits in chicken chromosomes 6, 7, 8, 11 and 13. 8th World Congress on Genetics Applied to Livestock Production. UNESP FMVZ, Botucatu, Brazil.
20- Navarro, P., P. M. Visscher., S. A. Knott., D. W. Burt., P. M. Hocking, and C. S. Haley. 2005. Mapping of quantitative trait loci affecting organ weights and blood variablesin a broiler layer cross. British Poultry Science, 46(4): 430-42.
21- Nones, K., M. C. Ledur., D. C. Ruy., E. E. Baron., C. M. R. Melo., A. S. A. M. T. Moura., E. L. Zanella., D. W. Burt, and L. L. Coutinho. 2005. Mapping QTLs on chicken chromosome 1 for performance and carcass traits in a broiler × layer cross. Animal Genetics, 37: 95-100.
22- Shibusawa, M., S. Minai., C. Nishida-Umehara., T. Suzuki., T. Mano., K. Yamada., T. Namikawa, and Y. Matsuda. 2001. A comparative cytogenetic study of chromosome homology between chicken and Japanese quail. Cytogenetic and Cell Genetics, 95: 103–9.
23- Tercic, D., A. Holcman., P. Dovc., D. R. Morrice., D. W. Burt., P. M. Hocking, and S. Horvat. 2009. Identification of chromosomal regions associated with growth and carcass traits in an F (3) full sib intercross line originating from a cross of chicken lines divergently selected on body weight. Animal Genetics, 40(5): 743-8.
24- Uemoto, Y., S. Sato., S. Odawara., H. Nokata., Y. Oyamada., Y. Taguchi., S. Yanai., O. Sasaki., H. Takahashi., K. Nirasawa, and E. Kobayashi. 2009. Genetic mapping of quantitative trait loci affecting growth and carcass traits in F2 intercross chickens. Poultry Science, 88(3): 477-482.
25- Zhou, H., N. Deeb., C. M. Evock-Clover., C. M. Ashwell, and S. J. Lamont. 2006. Genome-wide linkage analysis to identify chromosomal regions affecting phenotypic traits in the chicken II. Body composition. Poultry Science, 85(10): 1712-21.
ارجاع به مقاله
احمدیم., اسمعیلی زاده کشکوئیهع., & نصیری فرا. (2017). آنالیز آثار متقابل افزایشی، غلبه و ایمپرینتینگQTL با هچ و جنس روی برخی صفات کروموزوم 5 بلدرچین ژاپنی. پژوهشهای علوم دامی ایران, 9(1), 125-134. https://doi.org/10.22067/ijasr.v9i1.52641
نوع مقاله
علمی پژوهشی- ژنتیک و اصلاح دام و طیور