تجزیه ژنتیکی صفت طول عمر تولیدی در گله‌های گاو هلشتاین استان اصفهان

نوع مقاله : علمی پژوهشی- ژنتیک و اصلاح دام و طیور

نویسندگان

1 دانشگاه صنعتی اصفهان

2 دانشکده کشاورزی، دانشگاه صنعتی اصفهان، اصفهان، ایران

3 صنعتی اصفهان

چکیده

از جمله اهداف اصلاح نژاد در گاوهای شیری افزایش طول عمر تولیدی است. افزایش این صفت از طریق کاهش هزینه‌های جایگزینی تلیسه‌ها و ازدیاد فراوانی حیوانات پرتولید نقش بسزایی در افزایش سودآوری دارد. این مطالعه به منظور بررسی تنوع ژنتیکی طول عمر تولیدی گاوهای شیری هلشتاین با استفاده از مدل‌های تجزیه بقا انجام گرفت. داده ها شامل 35137 رکورد طول عمر تولیدی از زایش اول در گله‌های استان اصفهان طی سال‌های 1370 تا 1391 بود. حیوانات حذف شده و حذف نشده به ترتیب به صورت سانسور نشده و سانسور شده درنظر گرفته شد. همچنین هر گله دارای حداقل 20 رکورد بود و اطلاعات حداقل 10 دختر برای هر پدر در دسترس قرار داشت. برآورد فراسنجه‌های ژنتیکی با استفاده مدل پدری و کاربرد مدل ویبول در نرم افزار Survival Kit انجام شد. وراثت‌پذیری صفت طول عمر تولیدی براساس مقیاس لگاریتمی 074/0 و بر اساس مقیاس اولیه 18/0 برآورد شد. تغییرات فنوتیپی این صفت با ضریب رگرسیون 01/0 ± 03/0 - نشان داد کاهش خطر نسبی حذف در هر سال در گله‌های مورد مطالعه روی داده است. با توجه به تغییرات ارزش اصلاحی برآوردشده طول عمر تولیدی امکان افزایش این صفت از طریق انتخاب گاوهای برتر وجود دارد. بنابراین لازم است توجه بیشتری به صفت طول عمر تولیدی در برنامه‌های اصلاح نژاد گاو شیری انجام گیرد. روند منفی فنوتیپ احتمال خطر حذف نسبی نشان از بهبود فنوتیپی طول عمر تولیدی است اما روند ژنتیکی افزایش احتمال خطر حذف مؤید کاهش ژنتیکی طول عمر تولیدی در گله‌های مورد مطالعه است.

کلیدواژه‌ها


عنوان مقاله [English]

Genetic Analysis for Length of Productive Life in Holstein Dairy Herds in Isfahan Province

نویسندگان [English]

  • Hamed Amirpour Najafabadi 1
  • Saeed Ansari Mahyari 2
  • Mohammad Ali Edriss 3
1 Isfahan University of Technology
2 Faculty of Agriculture, Isfahan University of Technology, Isfahan, Iran
3 Isfahan University of Technology
چکیده [English]

Introduction One of the important breeding goals in dairy cattle is increasing length of productive life (LPL). In the recent decades, genetic evaluations of dairy cattle longevity have been a major concern for breeders. The trait LPL is defined as the number of days from the first calving to culling, death or censoring. Increasing LPL by reducing the costs of replacement of the heifers and increasing the number of high producing cows plays an important role in increasing the herd incomes and profitability.
Materials and Methods This study aimed to evaluate genetic variations for LPL based on the survival analysis models was used to evaluate the impact of environmental and genetic factors on the risk of culling and to estimate the genetic parameters for longevity in Holstein dairy herds. Data included 35,137 records of productive lifetime from the first calving during 1991 and 2012, collected from dairy herds in Isfahan province. Culled and un-culled animals were assigned as uncensored and censored cows, respectively. However, it may be of interest to distinguish between disposal mostly beyond the control of dairy managers such as the sale of profitable but sterile can (involuntary culling) and voluntary disposal of a healthy but not profitable cow. The number of observations was considered with at least 20 records per herd and at least 10 daughters per sire. The last lactation was considered for the animals whose culling date was missed. In this case, cow assigned as culled animal only if the time interval between end of the last lactation and date of recording exceeds 365 days. Three types of cows were excluded in this study: sold, without any records and transferred to other herds. The sires with one daughter in a herd were removed. Genetic parameters were estimated based on a sire model which was implemented in Weibull model in Survival Kit software Survival analysis using proportional hazard model was used to analyze data on LPL. The existence analysis models are the best for the genetic PL evaluation; these models are referred to as the Proportional Risk Models, which are categorized in two semi-parametric Cox and Weibull. Following the designed algorithm in this software, the records with known longevity and low FHL limit were used. Hence, the records were considered uncensored data if the cows were either culled or died for any reason. Therefore, censoring the records represented the cows were sold, exported or leased to other herds. Both Cox and Weibull models were implemented in Survival Kit, and they could be used for continuous and discontinuous (time-dependent) variables.
Results and Discussion The average lifetime in uncensored and censored cows were 937.8 and 1002.8 days, respectively. It is obvious that some cows are culled due to calving difficulties on day one, therefore LPL of One day is considered for them. Heritability could change based on the estimates of ρ and scale (λ). Estimates of heritability of LPL according to logarithmic scale and original scale were 0.074 and 0.18, respectively. In many studies on different populations, the heritability evaluated through survival analysis is higher than what is determined through linear models. Regression of phenotypic changes was -0.03±0.01, which showed that the reduction of relative culling risk has occurred slowly across the studied herds. The genetic trends of culling risk showed that regression coefficient was close to zero and therefore, it can be concluded that according to variance of the estimated breeding values in LPL, it would be possible to increase LPL by selecting the high ranked cows. The range of culling risk were calculated from 0.96 to 0.99. An attempt to estimate the genetic trend for sires was made by grouping sires according to their year of birth. Besides, negative phenotypic trends in this study for the proportional culling risk was achieved which demonstrated that LPL was phenotypically improved but based on the genetic trend, an increase in culling risk was observed that indicated a genetically decreasing in productive lifetime in studied dairy herds. More research is needed to analyze more data in other dairy farms in Iran.
Conclusion Based on the variation of the obtained breeding value, it is possible to increase the lifetime of cows via selecting the higher breeding value cows.

کلیدواژه‌ها [English]

  • Productive lifetime
  • Heritability
  • Holstein dairy cattle
1- Abdolmohammadi, A., M. Moradi Shahrebabak, and R. Ashtiani. 2002. Page 628-630 in Proc. 1st Congress of Animal Science. Iran. (In Persian).
2- Caraviello, D. Z., K. A. Weigel, and D. Gianola. 2004. Prediction of longevity breeding values for US Holstein sires using survival analysis methodology. Journal of Dairy Science, 87: 3518-3525.
3- Caraviello, D. Z., K. A. Weigel, and D. Gianola. 2004. Comparison between a weibull proportional hazards model and a linear model for predicting the genetic merit of US Jersey sires for daughter longevity. Journal of Dairy Science, 87: 1469-1476.
4- Chirinos, Z., D. Hernandez, and M. J. Carabaño. 2005. Effect of somatic cell scores on functional longevity of dairy cattle assessed by survival analysis. Archives Latinoamericanos de Produccion Animal, 13: 56-62.
5- Dadpasand, M. 2005. Survival using life productive of trend genetic and parameters genetic of evaluation analysis. PhD Thesis. University of Tehran, Iran. (In Persian).
6- Dastanian, M., S. Khalajzade, and M. Sayadnejad. 2011. Estimation the genetic and phenotypic parameters of milk yield and its correlation with age at first calving in Iranian Holstein dairy cows. 1st Congress of modern ideas in Agriculture, Tehran, Iran. (In Persian(
7- Dekkers, J. C. M, and L. M. Jairath. 1994. Requirements and uses of genetic evaluations for conformation and herd life. Pages 61-68. 5th World Congress on Genetics Applied to Livestock Production. Guelph, Ontario, Canada.
8- Ducrocq, V, and J. Solkner. 1998. "The survival Kit-V3.0" A package for large analysis of survival data. Pages 447-448 in Proc. 6th World Congress on Genetics Applied to Livestock Production. Genet. Appl. Armidale, New South Wales, Australia.
9- Lawlor, T. J., S. Tsuruta., L. Klei, and Misztal, I. 2002. Analysis of age specific predicted transmitting abilities for final scores in Holsteins with a random regression model. 7th World Congress on Genetics Applied to Livestock Production, Montpellier, France.
10- Perez, M. A., D. Hernandez., R. Alenda., M. J. Carabano, and N. Charfeddine.1999. Genetic analysis of true profit for Spanish dairy cattle. Available at http://www.interbull.slu.se/bulletins/bulletin23/ perez.pdf.
11- Settar, P, and J. I. Weller. 1999. Genetic analysis of cow survival in the Israeli dairy cattle population. Journal of Dairy Science, 82: 2170-2177.
12- Tsuruta, S., I. Misztal, and T. J. Lawlor. 2005. Changing definition of productive life in US Holsteins: effect on genetic correlations. Journal of Dairy Science, 88: 1156-1165.
13- Van Arendonk, J. A. M. 1991. Use of profit equations to determine relative economic value of dairy cattle herd life and production from field data. Journal of Dairy Science, 74: 1101-1107.
14- Van der Linde, C., and G. D. Jong. 2003. MACE for longevity traits. Pages 20-24 in Proc. Interbull Technical Workshop. Beltsville, MD, USA.
15- Vanraden, P. M, and G. R. Wiggans. 1995. Productive life evaluations: calculation, accuracy and economic value. Journal of Dairy Science, 78: 631-638.
16- Vukasinovic, N., J. Moll, and L. Casanova. 2001. Implementation of a routine genetic evaluation for longevity based on survival analysis techniques in dairy cattle populations in Switzerland. Journal of Dairy Science, 84: 2073-2080.
17- Yazdi, M. H., P. M. Visscher., V. Ducrocq, and R. Thompson. 2002. Heritability, reliability of genetic evaluations and response to selection in proportional hazard models. Journal of Dairy Science, 85: 1563-1577.
18- Zakizade, S., S. Saver, and A. Foroughi. 2010. Heritability estimation and factors affecting on true and productive longevity in Brown Swiss cattle breed. Page 2932-2935 in Proc. 4th Congress of Animal Science. Iran. (In Persian).
CAPTCHA Image