تأثیر دقت برآورد اثرات جایگاه‌های ژن‌های کمی (QTL) بر انتخاب به کمک مارکرهای ژنتیکی با در نظر گرفتن انحراف غالبیت

نوع مقاله : علمی پژوهشی- ژنتیک و اصلاح دام و طیور

نویسندگان

1 گروه علوم دامی، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران.

2 دانشکده منابع طبیعی و کشاورزی، دانشگاه نیوانگلند، آرمیدال، استرالیا

چکیده

هدف از این مطالعه بررسی تأثیر خطای برآورد اثرات QTL با در نظر گرفتن وجود انحراف غالبیت بر پاسخ به انتخاب به کمک مارکرهای ژنتیکی بود. جمعیتی پایه برابر 1000 نفر غیرخویشاوند و غیرهمخون بر اساس وراثت‌پذیری‌های 1/0 و 3/0 که تحت تأثیر QTL با اثرات مختلف افزایشی و غابیت و اثر پلی ژنتیک باقی‌مانده قرار داشتند شبیه‌سازی گردید. اثرات QTL با خطای صفر، ده و بیست درصد در نظر گرفته شد و دو سطح غالبیت کامل و غیر کامل برای QTL فرض گردید. پاسخ به انتخاب برای انتخاب به کمک مارکر و انتخاب بدون استفاده از مارکر محاسبه گردید. پاسخ به انتخاب بر اساس انتخاب توده‌ای ۲۰ درصد از افرادی که بیشترین شاخص انتخاب را داشته‌اند محاسبه گردید. نتایج نشان داد انتخاب به کمک مارکرهای ژنتیکی باعث افزایش پاسخ به انتخاب می‌شود اما وجود اثرات غالبیت در شرایطی که اثر QTL با خطا توام باشد باعث کاهش پاسخ به انتخاب می‌گردد و در شرایطی که خطای برآورد بالا باشد پاسخ به انتخاب به کمک مارکر کمتر از پاسخ انتخاب بدون استفاده از مارکر خواهد بود. نتایج این آزمایش نشان داد پارامترهای QTL قبل از استفاده در برنامه‌های اصلاحی کاربردی بایستی از دقت بالا برخوردار باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of the Accuracy of Estimated QTL Effect on Marker Assisted Selection Response Considering the Dominance Deviation

نویسندگان [English]

  • Mojtaba Tahmoorespur 1
  • nasiredin moghadar 2
1 Department of Animal Sciences, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
2 University of New England, Armidale, Australia
چکیده [English]

Introduction During years genetic improvement of economically important traits, which are amongst polygenic traits, has been based on the estimation of breeding values i.e. the total heritable effects of genes, based on pedigree and phenotypic records. This approach had limitations such as being time consuming and demanding massive phenotypic information. Nowadays, high throughput genomic technologies are available that provide genotypes of dense markers across genome towards estimating breeding values more accurately. Accurate estimation of allelic and genotypic effects of markers in linkage with QTLs needs a lot of phenotypic observations which is not always available in practice. Therefore, the amount of error of estimated QTL effect could be high. Further, the distribution of the effects of genes controlling traits might be non-non-normal. In case of overlooking these facts, the predicted genetic progress can be erroneous. The objective of this study was to find the influence of the accuracy of QTL effect estimation, considering the dominance deviation, on marker assisted selection response.
Materials and Methods A base population of 1000 unrelated, non-inbred individuals was simulated according to a trait with heritability of 0.1 and 0.3. The trait was affected by residual polygenic and QTL with additive effect associated with 0.0, 0.1 and 0.2 standard errors and complete or incomplete dominance effect. The genotypic effects of the three QTL genotypes were a, d and –a, respectively for dominant homozygotes, heterozygotes and recessive homozygotes. The QTL had two alleles and the dominance deviation was considered either equal to or half of the genotypic effect a. The population was in Hardy-Weinberg equilibrium. The polygenic variance was calculated as the difference between total additive genetic variance and QTL variance. Residual variance was equal to the difference between phenotypic variance and total additive genetic variance. Two selection was employed; one with polygenes and marker information, and the other one with polygenic variance without marker information. The difference between mean of selected group and the population mean was considered as response to selection. The selection response calculated by truncation selection based on the performance of top 20% with and without using QTL information over 500 repetitions.
Results and Discussion The results showed higher response for marker assisted selection compared to conventional selection without marker information, but it also showed the presence of dominance effect for QTL effect associated with estimation errors leads to decrease in marker assisted selection response. The superiority of genetic progress with marker assisted selection is proportional to the QTL variance contributing to the total genetic variance. Increasing standard error of QTL effect to 10 and 20 percent, led to lower genetic response to selection. When the contribution of QTL variance in total genetic variance is higher, with high levels of standard error of QTL effect, the response to selection was even lower than response to selection without marker information. Complete dominance further decreased the genetic response compared to incomplete dominance. This is because the genetic variance is more influenced by the dominance variance in case of complete dominance.
Conclusion This study showed that QTL information may be used in practical selection programs when estimated parameters are of high accuracy to be used in practical selection programs. Estimating QTL effects with error causes that selection response would be even lower than polygenic selection if the associated error rate is high. Estimated effects of genes controlling quantitative traits should have less error rate in order to be used in breeding programs.

کلیدواژه‌ها [English]

  • Dominance deviation
  • Marker assisted selection
  • QTL
1- Dekkers, J. C. M, and F. Hospital. 2002. The use of molecular genetics in improvement of agricultural populations. Nature Reviews Genetics, 3: 22–32.
2- Dalton, R. 2009. No bull: genes for better milk. Nature, 457: 369-369.
3- Oltenacu, P. A, and D. M. Broom. 2010. The impact of genetic selection for increased milk yield on the welfare of dairy cows. Animal Welfare, 19: 39-49.
4- Lande, R, and R. Thompson. 1990. Efficiency of marker-assisted selection in the improvement of quantitative traits. Genetics, 124: 743–756.
5- Meuwissen T. H. E, and J. A. M. Van Arendonk. 1992. Potential improvements in rate of genetic gain from marker-assisted selection in dairy cattle breeding. Journal of Dairy Science, 75: 1651-1659.
6- Ruane J, and J. J. Colleau. 1994. The value of marker assisted selection when one QTL is marked. Page 80 in Proc. The 46th Annual Meeting European, Association for Animal Production, Edinburgh, UK.
7- Meuwissen, T. H. E. and M. E. Goddard. 1996. The use of marker haplotypes in animal breeding schemes. Genetics Selection Evolution, 28:161-176.
8- Dekkers, J. C. M, and F. Hospital. 2002. Utilization of molecular genetics in genetic improvement of plants and animals. Nature Reviews: Genetics, 3: 22-32.
9- Villanueva, B., R. Pong-Wong., J. Fernandez, and M. A. Toro. 2005. Benefits from marker-assisted selection under an additive polygenic genetic model. Journal of Animal Science, 83: 1747–1752.
10- Goddard, M. E, and B. J. Hayes. 2002. Optimisation of response using molecular data. Page 22 in Proc. The 7th World Congress on Genetics Applied to Livestock Production, Montpellier, France.
11- Goddard. M. E. 2008. Genomic selection: prediction of accuracy and maximisation of long term response. Genetica, 136(2): 245-257.
12- Meuwissen, T. H. E., B. J. Hayes, and M. E. Goddard. 2001. Prediction of total genetic value using genome-wide dense marker maps. Genetics, 157: 1819–1829.
13- Falconer, D. S, and T. F. C. Mackay. 1996. Introduction to Quantitative Genetics. 4th ed. Longmans Green, Harlow, Essex, UK.
14- Dekkers, J. C. M. 2004. Commercial application of marker and gene assisted selection in livestock: strategies and lessons. Journal Animal Science, 82: E313-E328.
15- Spelman, R. J, and J. A. M. Van Arendonk. 1997. Effect of inaccurate parameter estimates on genetic response to marker-assisted selection in an outbred population. Journal of Dairy Science, 80(12): 3399-3410.
16- Palucci, V., L. R. Schaeffer., F. Miglior, and V. Osborne. 2007. Non-additive genetic effects for fertility traits in Canadian Holstein cattle. Genetics Selection Evolution, 39: 181–193.
CAPTCHA Image